Water-resistant gum-based phase change composite for thermo-regulating insulation packaging

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2023-05

Major/Subject

Mcode

Degree programme

Language

en

Pages

11

Series

Journal of Energy Storage, Volume 61

Abstract

The world's current energy crisis calls for green energy solutions that can preserve energy while incorporating renewable. As such, we have developed a leakage-proof phase change material (PCM) embedded in a biopolymeric matrix as a lightweight yet strong bio-based phase change composite (PCC) for passive energy storage and insulation purposes in packaging. This bio-based composite consists of gum tragacanth (GT) biopolymer and polyethylene glycol (PEG) PCM. It is further incorporated with biochar (BC) or mineral additive, i.e., Cloisite Na+, to enhance its mechanical strength and thermal stability, which are among the main challenges for insulation materials. A hydrophobic layer of octadecyl isocyanate (ODI) is developed on the surface of the composite to increase its water resistance. The composite provides a hydrophobic surface with a minor water uptake capacity of 3.6 ± 0.3 % after one-week immersion in the water. It shows high latent heat storage up to 160 J g−1 and a stable phase change behavior, as demonstrated by over 100 differential scanning calorimetry heating-cooling cycles. It also possesses notable compressive mechanical properties, which were improved significantly after incorporating BC and Cloisite Na+. The thermal conductivity of the composite is as low as 0.035 W m−1 K−1 manifesting in better thermal regulation compared with commercial polyethylene foams. This energy-positive bio-based solution combines the advantages of excellent insulation as a highly porous, lightweight, and strong composite with the latent heat and thermal inertia of PCM, making it suitable for transportation packaging of temperature-sensitive products.

Description

Keywords

Other note

Citation

Baniasadi, H, Seppälä, J, Kankkunen, A, Seppälä, A & Yazdani, R 2023, ' Water-resistant gum-based phase change composite for thermo-regulating insulation packaging ', Journal of Energy Storage, vol. 61, 106725 . https://doi.org/10.1016/j.est.2023.106725