Condition monitoring of electric motors using vibrations as fault indicators

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

School of Electrical Engineering | Master's thesis
Checking the digitized thesis and permission for publishing
Instructions for the author

Date

2012

Major/Subject

Tehoelektroniikka

Mcode

S-81

Degree programme

Language

en

Pages

xii + 91 s. + liitt. 6

Series

Abstract

In industries, condition monitoring of induction motor has been a challenging task for the engineers and researchers. Moreover, electrical engineering field is vast and lots of machineries are associated to it. In this vast field, fault occurrence is really difficult to avoid and it may result in serious consequences. Effective fault detection and diagnosis (FDD) can improve the system reliability, continuity and avoid expensive maintenance. To understand the fault analysis, some frequent methods are established for condition monitoring in recent days. There is still a big gap between FDD theories and applications since most of them are used for fault-type analysis. However, a very few of them are likely to deal in general fault detection. Vibration is one of the major parameters that detect faults in various machineries. It is the oscillatory motion of an object relative to a reference frame. All machineries have some natural vibrations. If some instability occurs, it creates additional oscillation, mostly for the mechanical faults. This is the first indicator to detect a fault in machines. Moreover, vibration signal can easily be processed by analogue and digital analysers. For the approach of early fault detection, the time domain vibration signal analysis could be a dominant method. This thesis makes an effort to detect faults in the time domain considering general fault cases. An algorithm is proposed to detect the functioning and faulty condition of induction motors. Again, a Matlab programming script is made for quick analysis of machines which can also demonstrate a good representation for both theoretical and experimental observations. Based on the experimental analysis, an average value is considered for the healthy machine while a threshold value is set for the faulty ones. In addition, for continuous condition monitoring, error detection pulse is provided to create a fault alarm signal.

Oikosulkumoottorin kunnonvalvonta on ollut haaste insinööreille ja tutkijoille. Lisäksi sähkötekniikan toimiala on laaja ja siihen liittyy useita koneistoja, joten vikojen esiintymistä koneissa on vaikea välttää. Tämä voi johtaa vakaviin seuraamuksiin. Tehokas vikojen havainnointi ja diagnosointi (FDD, Fault Detection and Diagnosis) voi parantaa järjestelmän luotettavuutta ja toimintavarmuutta, ja voi auttaa välttämään kalliita laitehuoltoja. Muutamia menetelmiä kunnonvalvonnan vika-analyysien ymmärtämiseksi on kehitetty hiljattain. FDD:n teorioiden ja sovellusten ero on yhä suuri, sillä useimpia sovelluksia käytetään vain vikatyypin tunnistukseen. Hyvin harvat niistä kykenevät kuitenkaan kattavaan viantunnistukseen. Yksi tärkeimmistä parametreista koneiden viantunnistuksessa on koneen värinä, mikä on pinnan edestakaista liikettä referenssikehykseen nähden. Kaikissa koneissa esiintyy luonnollista värinää. Tämän lisäksi jokin epästabiilius laitteessa aiheuttaa lähinnä mekaanisiin vikoihin kohdistuvaa ylimääräistä värinää koneeseen. Tämä värinä on ensimmäinen ilmaisin vian havaitsemiseen laitteissa. Värinäsignaali on helppo analysoida analogisilla ja digitaalisilla analysaattoreilla. Värinäsignaalin analyysi aika-alueessa voi olla toimivin tapa vikojen havaitsemiseen aikaisessa vaiheessa. Tässä työssä pyritään löytämään keinoja vikojen havaitsemiseen aika-alueessa yleisissä vikatapauksissa. Työssä esitetään algoritmi, jonka avulla voidaan havaita onko oikosulkumoottori normaali- vai vikatilassa. Lisäksi koneiden nopeaa analyysia varten on esitetty simulaatio, jonka avulla voidaan myös esittää havainnollisesti sekä teoreettisia että kokeellisia havaintoja. Vikahälytyssignaalin luomiseksi jatkuvaa kunnonvalvontaa varten tuotetaan virheenhavaitsemispulssi.

Description

Supervisor

Ovaska, Seppo

Thesis advisor

Arkkio, Antero

Keywords

vibration monitoring, tärinän valvonta, time domain analysis, aikatason analyysi, induction motor, induktiomoottori, faulty rotor bars, vialliset roottorisauvat, eccentricity, eksentrisyys, industrial lifting machine, teollinen nostokone, rubber tyred gantry cranes, nosturit

Other note

Citation