Exponential Speedup over Locality in MPC with Optimal Memory

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBalliu, Alkidaen_US
dc.contributor.authorBrandt, Sebastianen_US
dc.contributor.authorFischer, Manuelaen_US
dc.contributor.authorLatypov, Rustamen_US
dc.contributor.authorMaus, Yannicen_US
dc.contributor.authorOlivetti, Dennisen_US
dc.contributor.authorUitto, Jaraen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorScheideler, Christianen_US
dc.contributor.groupauthorProfessorship Uitto J.en
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Algorithms and Theoretical Computer Science (TCS)en
dc.contributor.organizationGran Sasso Science Instituteen_US
dc.contributor.organizationHelmholtz Center for Information Securityen_US
dc.contributor.organizationETH Zurichen_US
dc.contributor.organizationProfessorship Uitto J.en_US
dc.contributor.organizationGraz University of Technologyen_US
dc.date.accessioned2022-12-07T07:21:57Z
dc.date.available2022-12-07T07:21:57Z
dc.date.issued2022-10-17en_US
dc.description.abstractLocally Checkable Labeling (LCL) problems are graph problems in which a solution is correct if it satisfies some given constraints in the local neighborhood of each node. Example problems in this class include maximal matching, maximal independent set, and coloring problems. A successful line of research has been studying the complexities of LCL problems on paths/cycles, trees, and general graphs, providing many interesting results for the LOCAL model of distributed computing. In this work, we initiate the study of LCL problems in the low-space Massively Parallel Computation (MPC) model. In particular, on forests, we provide a method that, given the complexity of an LCL problem in the LOCAL model, automatically provides an exponentially faster algorithm for the low-space MPC setting that uses optimal global memory, that is, truly linear. While restricting to forests may seem to weaken the result, we emphasize that all known (conditional) lower bounds for the MPC setting are obtained by lifting lower bounds obtained in the distributed setting in tree-like networks (either forests or high girth graphs), and hence the problems that we study are challenging already on forests. Moreover, the most important technical feature of our algorithms is that they use optimal global memory, that is, memory linear in the number of edges of the graph. In contrast, most of the state-of-the-art algorithms use more than linear global memory. Further, they typically start with a dense graph, sparsify it, and then solve the problem on the residual graph, exploiting the relative increase in global memory. On forests, this is not possible, because the given graph is already as sparse as it can be, and using optimal memory requires new solutions.en
dc.description.versionPeer revieweden
dc.format.extent21
dc.format.extent1-21
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBalliu, A, Brandt, S, Fischer, M, Latypov, R, Maus, Y, Olivetti, D & Uitto, J 2022, Exponential Speedup over Locality in MPC with Optimal Memory . in C Scheideler (ed.), 36th International Symposium on Distributed Computing (DISC 2022) ., 9, Leibniz International Proceedings in Informatics, LIPIcs, vol. 246, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 1-21, International Symposium on Distributed Computing, Augusta, Georgia, United States, 25/10/2022 . https://doi.org/10.4230/LIPIcs.DISC.2022.9en
dc.identifier.doi10.4230/LIPIcs.DISC.2022.9en_US
dc.identifier.isbn978-3-95977-255-6
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: 6d06d2fa-2499-4040-9098-e582c3195ed7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6d06d2fa-2499-4040-9098-e582c3195ed7en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85140911020&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/93495308/Exponential_Speedup_over_Locality_in_MPC_with_Optimal_Memory.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118036
dc.identifier.urnURN:NBN:fi:aalto-202212076781
dc.language.isoenen
dc.publisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik
dc.relation.ispartofInternational Symposium on Distributed Computingen
dc.relation.ispartofseries36th International Symposium on Distributed Computing (DISC 2022)en
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics, LIPIcsen
dc.relation.ispartofseriesVolume 246en
dc.rightsopenAccessen
dc.titleExponential Speedup over Locality in MPC with Optimal Memoryen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files