Bayesian network structure learning with integer programming: Polytopes, facets and complexity

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2017-01-01

Major/Subject

Mcode

Degree programme

Language

en

Pages

45
185-229

Series

Journal of Artificial Intelligence Research, Volume 58

Abstract

The challenging task of learning structures of probabilistic graphical models is an important problem within modern AI research. Recent years have witnessed several major algorithmic advances in structure learning for Bayesian networks|arguably the most central class of graphical models|especially in what is known as the score-based setting. A successful generic approach to optimal Bayesian network structure learning (BNSL), based on integer programming (IP), is implemented in the gobnilp system. Despite the recent algorithmic advances, current understanding of foundational aspects underlying the IP based approach to BNSL is still somewhat lacking. Understanding fundamental aspects of cutting planes and the related separation problem is important not only from a purely theoretical perspective, but also since it holds out the promise of further improving the effciency of state-of-the-art approaches to solving BNSL exactly. In this paper, we make several theoretical contributions towards these goals: (i) we study the computational complexity of the separation problem, proving that the problem is NP-hard; (ii) we formalise and analyse the relationship between three key polytopes underlying the IP-based approach to BNSL; (iii) we study the facets of the three polytopes both from the theoretical and practical perspective, providing, via exhaustive computation, a complete enumeration of facets for low-dimensional family-variable polytopes; and, furthermore, (iv) we establish a tight connection of the BNSL problem to the acyclic subgraph problem.

Description

Keywords

Other note

Citation

Cussens, J, Järvisalo, M, Korhonen, J H & Bartlett, M 2017, ' Bayesian network structure learning with integer programming : Polytopes, facets and complexity ', Journal of Artificial Intelligence Research, vol. 58, pp. 185-229 . https://doi.org/10.1613/jair.5203