Security Data Collection and Data Analytics in the Internet: A Survey

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJing, Xuyangen_US
dc.contributor.authorYan, Zhengen_US
dc.contributor.authorPedrycz, Witolden_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.organizationXidian Universityen_US
dc.contributor.organizationUniversity of Albertaen_US
dc.date.accessioned2019-01-30T15:09:01Z
dc.date.available2019-01-30T15:09:01Z
dc.date.issued2019-01-01en_US
dc.description.abstractAttacks over the Internet are becoming more and more complex and sophisticated. How to detect security threats and measure the security of the Internet arises a significant research topic. For detecting the Internet attacks and measuring its security, collecting different categories of data and employing methods of data analytics are essential. However, the literature still lacks a thorough review on security-related data collection and analytics on the Internet. Therefore, it becomes a necessity to review the current state of the art in order to gain a deep insight on what categories of data should be collected and which methods should be used to detect the Internet attacks and to measure its security. In this paper, we survey existing studies about security-related data collection and analytics for the purpose of measuring the Internet security. We first divide the data related to network security measurement into four categories: 1) packet-level data; 2) flow-level data; 3) connection-level data; and 4) host-level data. For each category of data, we provide a specific classification and discuss its advantages and disadvantages with regard to the Internet security threat detection. We also propose several additional requirements for security-related data analytics in order to make the analytics flexible and scalable. Based on the usage of data categories and the types of data analytic methods, we review current detection methods for distributed denial of service flooding and worm attacks by applying the proposed requirements to evaluate their performance. Finally, based on the completed review, a list of open issues is outlined and future research directions are identified.en
dc.description.versionPeer revieweden
dc.format.extent33
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJing, X, Yan, Z & Pedrycz, W 2019, ' Security Data Collection and Data Analytics in the Internet : A Survey ', IEEE Communications Surveys and Tutorials, vol. 21, no. 1, 8428412, pp. 586 - 618 . https://doi.org/10.1109/COMST.2018.2863942en
dc.identifier.doi10.1109/COMST.2018.2863942en_US
dc.identifier.issn1553-877X
dc.identifier.otherPURE UUID: 6491f666-7a04-4652-bc9c-c39792c03b97en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6491f666-7a04-4652-bc9c-c39792c03b97en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85051408540&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/31281216/ELEC_Jing_Securtiy_data_collection_IEEECSaT.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/36259
dc.identifier.urnURN:NBN:fi:aalto-201901301429
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Communications Surveys and Tutorialsen
dc.relation.ispartofseriesVolume 21, issue 1, pp. 586 - 618en
dc.rightsopenAccessen
dc.subject.keywordComputer crimeen_US
dc.subject.keywordData analysisen_US
dc.subject.keyworddata analyticsen_US
dc.subject.keywordData collectionen_US
dc.subject.keyworddata collectionen_US
dc.subject.keywordDDoS flooding attacksen_US
dc.subject.keywordGrippersen_US
dc.subject.keywordInterneten_US
dc.subject.keywordProtocolsen_US
dc.subject.keywordsecurity measurement.en_US
dc.subject.keywordSecurity-related dataen_US
dc.subject.keywordworm attacksen_US
dc.titleSecurity Data Collection and Data Analytics in the Internet: A Surveyen
dc.typeA2 Katsausartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files