Electronic and transport properties in geometrically disordered graphene antidot lattices

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2015

Major/Subject

Mcode

Degree programme

Language

en

Pages

1-8

Series

PHYSICAL REVIEW B, Volume 91, issue 12

Abstract

A graphene antidot lattice, created by a regular perforation of a graphene sheet, can exhibit a considerable band gap required by many electronics devices. However, deviations from perfect periodicity are always present in real experimental setups and can destroy the band gap. Our numerical simulations, using an efficient linear-scaling quantum transport simulation method implemented on graphics processing units, show that disorder that destroys the band gap can give rise to a transport gap caused by Anderson localization. The size of the defect-induced transport gap is found to be proportional to the radius of the antidots and inversely proportional to the square of the lattice periodicity. Furthermore, randomness in the positions of the antidots is found to be more detrimental than randomness in the antidot radius. The charge carrier mobilities are found to be very small compared to values found in pristine graphene, in accordance with recent experiments.

Description

Keywords

graphene

Other note

Citation

Fan, Z, Uppstu, A & Harju, A 2015, ' Electronic and transport properties in geometrically disordered graphene antidot lattices ', Physical Review B, vol. 91, no. 12, 125434, pp. 1-8 . https://doi.org/10.1103/PhysRevB.91.125434