Joint Non-negative Matrix Factorization for Learning Ideological Leaning on Twitter

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLahoti, Preethien_US
dc.contributor.authorGarimella, Kiranen_US
dc.contributor.authorGionis, Aristidesen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorAdj. Prof. Gionis Aris groupen
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.date.accessioned2019-01-30T15:08:12Z
dc.date.available2019-01-30T15:08:12Z
dc.date.issued2018en_US
dc.description| openaire: EC/H2020/654024/EU//SoBigData
dc.description.abstractPeople are shifting from traditional news sources to online news at an incredibly fast rate. However, the technology behind online news consumption promotes content that confirms the users» existing point of view. This phenomenon has led to polarization of opinions and intolerance towards opposing views. Thus, a key problem is to model information filter bubbles on social media and design methods to eliminate them. In this paper, we use a machine-learning approach to learn a liberal-conservative ideology space on Twitter, and show how we can use the learned latent space to tackle the filter bubble problem. We model the problem of learning the liberal-conservative ideology space of social media users and media sources as a constrained non-negative matrix-factorization problem. Our model incorporates the social-network structure and content-consumption information in a joint factorization problem with shared latent factors. We validate our model and solution on a real-world Twitter dataset consisting of controversial topics, and show that we are able to separate users by ideology with over 90% purity. When applied to media sources, our approach estimates ideology scores that are highly correlated(Pearson correlation 0.9) with ground-truth ideology scores. Finally, we demonstrate the utility of our model in real-world scenarios, by illustrating how the learned ideology latent space can be used to develop exploratory and interactive interfaces that can help users in diffusing their information filter bubble.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.identifier.citationLahoti, P, Garimella, K & Gionis, A 2018, Joint Non-negative Matrix Factorization for Learning Ideological Leaning on Twitter . in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining . ACM, New York, NY, USA, pp. 351-359, ACM International Conference on Web Search and Data Mining, Marina Del Rey, California, United States, 05/02/2018 . https://doi.org/10.1145/3159652.3159669en
dc.identifier.doi10.1145/3159652.3159669en_US
dc.identifier.isbn978-1-4503-5581-0
dc.identifier.otherPURE UUID: 45800502-1e5b-4e0c-b9cd-1ea8b5981100en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/45800502-1e5b-4e0c-b9cd-1ea8b5981100en_US
dc.identifier.otherPURE LINK: https://arxiv.org/abs/1711.10251en_US
dc.identifier.otherPURE LINK: http://doi.acm.org/10.1145/3159652.3159669en_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/36242
dc.identifier.urnURN:NBN:fi:aalto-201901301412
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/654024/EU//SoBigDataen_US
dc.relation.ispartofACM International Conference on Web Search and Data Miningen
dc.relation.ispartofseriesProceedings of the Eleventh ACM International Conference on Web Search and Data Miningen
dc.relation.ispartofseriespp. 351-359en
dc.rightsopenAccessen
dc.subject.keywordcombining link and contenten_US
dc.subject.keywordgraph regularizationen_US
dc.subject.keywordideologyen_US
dc.subject.keywordinformation filter bubbleen_US
dc.subject.keywordlatent space learningen_US
dc.subject.keywordmanifold learningen_US
dc.subject.keywordmatrix factorizationen_US
dc.subject.keywordpolarizationen_US
dc.subject.keywordsocial networksen_US
dc.subject.keywordtwitteren_US
dc.titleJoint Non-negative Matrix Factorization for Learning Ideological Leaning on Twitteren
dc.typeA4 Artikkeli konferenssijulkaisussafi

Files