A repeated unknown game: Decentralized task offloading in vehicular fog computing

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorCho, Byungjinen_US
dc.contributor.authorXiao, Yuen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorMobile Cloud Computingen
dc.date.accessioned2024-01-04T08:55:45Z
dc.date.available2024-01-04T08:55:45Z
dc.date.issued2023-10-01en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractOffloading computation to nearby edge/fog computing nodes, including the ones carried by moving vehicles, e.g., vehicular fog nodes (VFN), has proved to be a promising approach for enabling low-latency and compute-intensive mobility applications, such as cooperative and autonomous driving. This work considers vehicular fog computing scenarios where the clients of computation offloading services try to minimize their own costs while deciding which VFNs to offload their tasks. We focus on decentralized multi-agent decision-making in a repeated unknown game where each agent, e.g., service client, can observe only its own action and realized cost. In other words, each agent is unaware of the game composition or even the existence of opponents. We apply a completely uncoupled learning rule to generalize the decentralized decision-making algorithm presented in [7] for the multi-agent case. The multi-agent solution proposed in this work can capture the unknown offloading cost variations susceptive to resource congestion under an adversarial framework where each agent may take implicit cost estimation and suitable resource choice adapting to the dynamics associated with volatile supply and demand. According to the evaluation via simulation, this work reveals that such individual perturbations for robustness to uncertainty and adaptation to dynamicity ensure a certain level of optimality in terms of social welfare, e.g., converging the actual sequence of play with unknown and asymmetric attributes and lowering the correspondent cost in social welfare due to the self-interested behaviors of agents.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.extent13430-13446
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationCho, B & Xiao, Y 2023, ' A repeated unknown game : Decentralized task offloading in vehicular fog computing ', IEEE Transactions on Vehicular Technology, vol. 72, no. 10, pp. 13430-13446 . https://doi.org/10.1109/TVT.2023.3275120en
dc.identifier.doi10.1109/TVT.2023.3275120en_US
dc.identifier.issn0018-9545
dc.identifier.otherPURE UUID: 5c797e79-d46c-496d-ae8c-816faa486fdcen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5c797e79-d46c-496d-ae8c-816faa486fdcen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85159800796&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/131702461/Cho_A_repeated_unknown_game_Decentralized_task.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125430
dc.identifier.urnURN:NBN:fi:aalto-202401041119
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Vehicular Technologyen
dc.relation.ispartofseriesVolume 72, issue 10en
dc.rightsopenAccessen
dc.subject.keywordadversarial multi-armed banditen_US
dc.subject.keywordBehavioral sciencesen_US
dc.subject.keywordCostsen_US
dc.subject.keywordGamesen_US
dc.subject.keywordGeneratorsen_US
dc.subject.keywordTask analysisen_US
dc.subject.keywordTask offloadingen_US
dc.subject.keywordUncertaintyen_US
dc.subject.keywordunknown gameen_US
dc.subject.keywordVehicle dynamicsen_US
dc.titleA repeated unknown game: Decentralized task offloading in vehicular fog computingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files