Unsupervised Machine Learning for Anomaly Detection in Wind Turbine Converters

No Thumbnail Available

URL

Journal Title

Journal ISSN

Volume Title

Sähkötekniikan korkeakoulu | Master's thesis

Date

2019-06-17

Department

Major/Subject

Electrical Power and Energy Engineering

Mcode

ELEC3024

Degree programme

AEE - Master’s Programme in Automation and Electrical Engineering (TS2013)

Language

en

Pages

56 + 3

Series

Description

Supervisor

Hinkkanen, Marko

Thesis advisor

Pirttioja, Teppo

Keywords

anomaly detection, unsupervised machine learning, data analysis, wind turbine converter

Other note

Citation