Nanocellulose Interactions with Protein and Water in Advanced Sensing Systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorBorghei, Maryam, Dr., Aalto University, Finland
dc.contributor.advisorOrelma, Hannes, Dr., VTT Technical Research Centre of Finland, Finland
dc.contributor.authorSolin, Katariina
dc.contributor.departmentBiotuotteiden ja biotekniikan laitosfi
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.labBio-based Colloids and Materialsen
dc.contributor.schoolKemian tekniikan korkeakoulufi
dc.contributor.schoolSchool of Chemical Technologyen
dc.contributor.supervisorRojas, Orlando, Prof., Aalto University, Department of Bioproducts and Biosystems, Finland
dc.date.accessioned2022-04-13T09:00:18Z
dc.date.available2022-04-13T09:00:18Z
dc.date.defence2022-05-05
dc.date.issued2022
dc.descriptionDefence is held on 5.5.2022 12:00 – 15:00 Zoom https://aalto.zoom.us/j/67593740995
dc.description.abstractIn this work, cellulosic nanomaterials were investigated for application as fluidic and sensing platforms. These platforms were used for humidity measurement, biosensors, and immunoassays, which are relevant to the areas of diagnostics, printed electronics, and smart packaging. A systematic investigation was carried out to study the interactions between water and protein molecules with cellulosic materials, which was facilitated by advanced techniques such as quartz microgravimetry, surface plasmon resonance, and confocal microscopy. Humidity responsive and electroactive composite films were developed using hybrid materials composed of nanocellulose and carbon nanotubes. The changes in relative humidity of air were monitored by measuring the shift in electroacoustic admittance and electrical resistivity of composite films upon water uptake. Other systems that incorporated mineral particles and nano-and microcellulose were used for lateral flow assays (LFA) based on fluidic wicking. For this purpose, inkjet printing was used to produce hydrophobic channel sidewalls on nanopaper. Alternatively, stencil printing of the fluid-wicking element was applied on hydrophobic supports. These wicking systems showed the potential as new types of LFA devices with excellent sensitivity. Glucose, non-specific protein, and antigen detection were demonstrated by colorimetric sensing at clinically relevant concentrations. A new type of cellulose nanomaterial, cellulose II nanoparticles, was introduced as a substrate for controlled protein adsorption. The interactions and protein accessibility to surfaces treated with such cellulose II nanoparticles, which formed a hydrogel film, were investigated in detail. Cationic cellulose II nanoparticles (NPcat) showed one of the highest levels of accessibility recorded, following both specific and non-specific protein interactions, and suggested NPcat suitability as a new immobilizing agent for biomolecular sensing. Oppositely charged anionic cellulose II nanoparticles (NPan) were used for surface passivation and indicated a great potential as a blocking agent that can be deposited on substrates to minimize non-specific molecular interactions. Both cellulose nanospheres, NPcat and NPan were deployed in protein-accessible and protein-repellent materials, respectively, and facilitated the design of a rapid antigen sensing system for SARS-CoV-2 nucleocapsid.en
dc.description.abstractTässä työssä tutkittiin nanoselluloosamateriaalien käyttöä sensoreissa. Työssä keskityttiin sellaisten komponenttien kehittämiseen, joita voitaisiin hyödyntää kosteusantureissa, sekä kemiallisissa että immunologisissa biosensoreissa. Näiden käyttökohteita ovat mm. diagnostiikan sovellukset, painettu elektroniikka ja älypakkaukset. Tässä työssä veden ja proteiinin vuorovaikutuksia selluloosamateriaalien kanssa tutkittiin käyttämällä mikrogravimetriaa, pintaplasmonresonanssia ja konfokaalimikroskopiaa. Kosteuteen reagoivat, elektroaktiiviset komposiittifilmit kehitettiin nanoselluloosasta ja hiilinanoputkista. Veden adsorption aiheuttamat muutokset komposiittifilmien elektroakustisessa admittanssissa ja ominaisvastuksessa osoittivat mahdollisuuden seurata suhteellisen ilmankosteuden muutoksia. Lisäksi lateraalivirtausanalyysiin (LFA) sopivia nestevirtauskanavia valmistettiin joko mustesuihkutulostamalla hydrofobisia kanavien seinämiä nanopaperille tai stensiilitulostamalla nestettä siirtäviä rakenteita hydrofobisille substraateille. Nämä fluidikanavat osoittivat mahdollisuuksia kehittää uusia, sensitiivisiä LFA-laitteita. Painetuilla, huokoisilla, nanoselluloosaa ja mineraaleja hyodyntävillä nestekanavilla osoitettiin kolorimetrisin menetelmin glukoosin, epäspesifisen proteiinin ja antigeenin havaitseminen kliinisesti merkityksellisillä konsentraatioilla. Selluloosa II nanopartikkelien käyttö proteiinien vuorovaikutusten kontrolloinnissa osoitettiin tutkimalla proteiinien adsorptiota nanopartikkeleilla käsitellyille pinnoille. Suurin adsorptio saavutettiin positiivisesti varautuneilla selluloosa II nanopartikkeleilla (NPcat). Lisäksi sekä spesifisiä että epäspesifisiä proteiinien vuorovaikutuksia pystyttiin luomaan eri pinnoilla, mikä viittaa niiden sopivuuteen sensorien bioreagenssien immobilisoivana aineena. Anioniset selluloosa II nanopartikkelit (NPan) osoittautuivat sen sijaan hyviksi pintojen passivoinnissa, mikä osoittaa niiden potentiaalin substraattien blokkausaineena eli epäspesifisten molekyylien vuorovaikutusten estäjänä. Näitä selluloosan nanopartikkeleihin perustuvia proteiineja immobilisoivia ja proteiineja hylkiviä materiaaleja käytettiin SARS-CoV-2-nukleokapsidille suunnatuissa antigeenitesteissä.fi
dc.format.extent90 + app. 130
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-0749-4 (electronic)
dc.identifier.isbn978-952-64-0748-7 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/113933
dc.identifier.urnURN:ISBN:978-952-64-0749-4
dc.language.isoenen
dc.opnCathala, Bernard, Dr., French National Institute for Agricultural Research, France
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Solin, Katariina; Borghei, Maryam; Sel, Ozlem; Orelma, Hannes; Johansson, Leena-Sisko; Perrot, Hubert; Rojas, Orlando J. 2020. Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing. ACS Applied Materials & Interfaces, 12(32), 36437–36448. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202009255523. DOI: 10.1021/acsami.0c09997
dc.relation.haspart[Publication 2]: Solin, Katariina; Orelma, Hannes; Borghei, Maryam; Vuoriluoto, Maija; Koivunen, Risto; Rojas, Orlando J. 2019. Two-Dimensional Antifouling Fluidic Channels on Nanopapers for Biosensing. Biomacromolecules, 20(2), 1036– 1044. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201902251836. DOI: 10.1021/acs.biomac.8b01656
dc.relation.haspart[Publication 3]: Solin, Katariina; Borghei, Maryam; Imani, Monireh; Kämäräinen, Tero; Kiri, Kaisa; Mäkelä, Tapio; Khakalo, Alexey; Orelma, Hannes; Gane, Patrick; Rojas, Orlando J. 2021. Bicomponent cellulose fibrils and minerals afford wicking channels stencil-printed on paper for rapid and reliable fluidic platforms. ACS Applied Polymer Materials, 3(11), 5536–5546. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202111049984. DOI: 10.1021/acsapm.1c00856
dc.relation.haspart[Publication 4]: Solin, Katariina; Beaumont, Marco; Rosenfeldt, Sabine; Orelma, Hannes; Borghei, Maryam; Bacher, Markus; Opietnik, Martina; Rojas, Orlando J. 2020. Self-Assembly of Soft Cellulose Nanospheres into Colloidal Gel Layers with Enhanced Protein Adsorption Capability for Next-Generation Immunoassays. Small, 16(50), 2004702. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-2020123160272. DOI: 10.1002/smll.202004702
dc.relation.haspart[Publication 5]: Solin, Katariina; Beaumont, Marco; Borghei, Maryam; Orelma, Hannes; Mertens, Pascal; Rojas, Orlando J. Immobilized cellulose nanospheres in lateral flow immunoassay enable rapid nucleocapsid antigen-based diagnosis of SARS-CoV-2 from salivary samples. Submitted to ACS Analytical Chemistry in the year 2021. DOI: 10.26434/chemrxiv-2021-726hl
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries46/2022
dc.revGarnier, Gil, Prof., Monash University, Australia
dc.revEdwards, J. Vincent, Dr., United States Department of Agriculture, USA
dc.subject.keywordnanocelluloseen
dc.subject.keywordsensingen
dc.subject.keywordsurface interactionsen
dc.subject.keywordbioactivityen
dc.subject.keyworddiagnosticsen
dc.subject.keywordnanoselluloosafi
dc.subject.keywordsensorifi
dc.subject.keywordpintavuorovaikutuksetfi
dc.subject.keywordbioaktiivisuusfi
dc.subject.keyworddiagnostiikkafi
dc.subject.otherChemistryen
dc.titleNanocellulose Interactions with Protein and Water in Advanced Sensing Systemsen
dc.titleNanoselluloosan, veden ja proteiinien vuorovaikutuksien hyödyntäminen sensoreissafi
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2022-05-11_1615
local.aalto.archiveyes
local.aalto.formfolder2022_04_12_klo_14_04
local.aalto.infraBioeconomy Infrastructure
local.aalto.infraOtaNano
local.aalto.infraOtaNano - Nanomicroscopy Center

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526407494.pdf
Size:
20.84 MB
Format:
Adobe Portable Document Format