Nanocellulose Interactions with Protein and Water in Advanced Sensing Systems

Loading...
Thumbnail Image

URL

Journal Title

Journal ISSN

Volume Title

School of Chemical Technology | Doctoral thesis (article-based) | Defence date: 2022-05-05

Date

2022

Major/Subject

Mcode

Degree programme

Language

en

Pages

90 + app. 130

Series

Aalto University publication series DOCTORAL THESES, 46/2022

Abstract

In this work, cellulosic nanomaterials were investigated for application as fluidic and sensing platforms. These platforms were used for humidity measurement, biosensors, and immunoassays, which are relevant to the areas of diagnostics, printed electronics, and smart packaging. A systematic investigation was carried out to study the interactions between water and protein molecules with cellulosic materials, which was facilitated by advanced techniques such as quartz microgravimetry, surface plasmon resonance, and confocal microscopy. Humidity responsive and electroactive composite films were developed using hybrid materials composed of nanocellulose and carbon nanotubes. The changes in relative humidity of air were monitored by measuring the shift in electroacoustic admittance and electrical resistivity of composite films upon water uptake. Other systems that incorporated mineral particles and nano-and microcellulose were used for lateral flow assays (LFA) based on fluidic wicking. For this purpose, inkjet printing was used to produce hydrophobic channel sidewalls on nanopaper. Alternatively, stencil printing of the fluid-wicking element was applied on hydrophobic supports. These wicking systems showed the potential as new types of LFA devices with excellent sensitivity. Glucose, non-specific protein, and antigen detection were demonstrated by colorimetric sensing at clinically relevant concentrations. A new type of cellulose nanomaterial, cellulose II nanoparticles, was introduced as a substrate for controlled protein adsorption. The interactions and protein accessibility to surfaces treated with such cellulose II nanoparticles, which formed a hydrogel film, were investigated in detail. Cationic cellulose II nanoparticles (NPcat) showed one of the highest levels of accessibility recorded, following both specific and non-specific protein interactions, and suggested NPcat suitability as a new immobilizing agent for biomolecular sensing. Oppositely charged anionic cellulose II nanoparticles (NPan) were used for surface passivation and indicated a great potential as a blocking agent that can be deposited on substrates to minimize non-specific molecular interactions. Both cellulose nanospheres, NPcat and NPan were deployed in protein-accessible and protein-repellent materials, respectively, and facilitated the design of a rapid antigen sensing system for SARS-CoV-2 nucleocapsid.

Tässä työssä tutkittiin nanoselluloosamateriaalien käyttöä sensoreissa. Työssä keskityttiin sellaisten komponenttien kehittämiseen, joita voitaisiin hyödyntää kosteusantureissa, sekä kemiallisissa että immunologisissa biosensoreissa. Näiden käyttökohteita ovat mm. diagnostiikan sovellukset, painettu elektroniikka ja älypakkaukset. Tässä työssä veden ja proteiinin vuorovaikutuksia selluloosamateriaalien kanssa tutkittiin käyttämällä mikrogravimetriaa, pintaplasmonresonanssia ja konfokaalimikroskopiaa. Kosteuteen reagoivat, elektroaktiiviset komposiittifilmit kehitettiin nanoselluloosasta ja hiilinanoputkista. Veden adsorption aiheuttamat muutokset komposiittifilmien elektroakustisessa admittanssissa ja ominaisvastuksessa osoittivat mahdollisuuden seurata suhteellisen ilmankosteuden muutoksia. Lisäksi lateraalivirtausanalyysiin (LFA) sopivia nestevirtauskanavia valmistettiin joko mustesuihkutulostamalla hydrofobisia kanavien seinämiä nanopaperille tai stensiilitulostamalla nestettä siirtäviä rakenteita hydrofobisille substraateille. Nämä fluidikanavat osoittivat mahdollisuuksia kehittää uusia, sensitiivisiä LFA-laitteita. Painetuilla, huokoisilla, nanoselluloosaa ja mineraaleja hyodyntävillä nestekanavilla osoitettiin kolorimetrisin menetelmin glukoosin, epäspesifisen proteiinin ja antigeenin havaitseminen kliinisesti merkityksellisillä konsentraatioilla. Selluloosa II nanopartikkelien käyttö proteiinien vuorovaikutusten kontrolloinnissa osoitettiin tutkimalla proteiinien adsorptiota nanopartikkeleilla käsitellyille pinnoille. Suurin adsorptio saavutettiin positiivisesti varautuneilla selluloosa II nanopartikkeleilla (NPcat). Lisäksi sekä spesifisiä että epäspesifisiä proteiinien vuorovaikutuksia pystyttiin luomaan eri pinnoilla, mikä viittaa niiden sopivuuteen sensorien bioreagenssien immobilisoivana aineena. Anioniset selluloosa II nanopartikkelit (NPan) osoittautuivat sen sijaan hyviksi pintojen passivoinnissa, mikä osoittaa niiden potentiaalin substraattien blokkausaineena eli epäspesifisten molekyylien vuorovaikutusten estäjänä. Näitä selluloosan nanopartikkeleihin perustuvia proteiineja immobilisoivia ja proteiineja hylkiviä materiaaleja käytettiin SARS-CoV-2-nukleokapsidille suunnatuissa antigeenitesteissä.

Description

Defence is held on 5.5.2022 12:00 – 15:00 Zoom https://aalto.zoom.us/j/67593740995

Supervising professor

Rojas, Orlando, Prof., Aalto University, Department of Bioproducts and Biosystems, Finland

Thesis advisor

Borghei, Maryam, Dr., Aalto University, Finland
Orelma, Hannes, Dr., VTT Technical Research Centre of Finland, Finland

Keywords

nanocellulose, sensing, surface interactions, bioactivity, diagnostics, nanoselluloosa, sensori, pintavuorovaikutukset, bioaktiivisuus, diagnostiikka

Other note

Parts

  • [Publication 1]: Solin, Katariina; Borghei, Maryam; Sel, Ozlem; Orelma, Hannes; Johansson, Leena-Sisko; Perrot, Hubert; Rojas, Orlando J. 2020. Electrically Conductive Thin Films Based on Nanofibrillated Cellulose: Interactions with Water and Applications in Humidity Sensing. ACS Applied Materials & Interfaces, 12(32), 36437–36448.
    Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202009255523
    DOI: 10.1021/acsami.0c09997 View at publisher
  • [Publication 2]: Solin, Katariina; Orelma, Hannes; Borghei, Maryam; Vuoriluoto, Maija; Koivunen, Risto; Rojas, Orlando J. 2019. Two-Dimensional Antifouling Fluidic Channels on Nanopapers for Biosensing. Biomacromolecules, 20(2), 1036– 1044.
    Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-201902251836
    DOI: 10.1021/acs.biomac.8b01656 View at publisher
  • [Publication 3]: Solin, Katariina; Borghei, Maryam; Imani, Monireh; Kämäräinen, Tero; Kiri, Kaisa; Mäkelä, Tapio; Khakalo, Alexey; Orelma, Hannes; Gane, Patrick; Rojas, Orlando J. 2021. Bicomponent cellulose fibrils and minerals afford wicking channels stencil-printed on paper for rapid and reliable fluidic platforms. ACS Applied Polymer Materials, 3(11), 5536–5546.
    Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202111049984
    DOI: 10.1021/acsapm.1c00856 View at publisher
  • [Publication 4]: Solin, Katariina; Beaumont, Marco; Rosenfeldt, Sabine; Orelma, Hannes; Borghei, Maryam; Bacher, Markus; Opietnik, Martina; Rojas, Orlando J. 2020. Self-Assembly of Soft Cellulose Nanospheres into Colloidal Gel Layers with Enhanced Protein Adsorption Capability for Next-Generation Immunoassays. Small, 16(50), 2004702.
    DOI: 10.1002/smll.202004702 View at publisher
  • [Publication 5]: Solin, Katariina; Beaumont, Marco; Borghei, Maryam; Orelma, Hannes; Mertens, Pascal; Rojas, Orlando J. Immobilized cellulose nanospheres in lateral flow immunoassay enable rapid nucleocapsid antigen-based diagnosis of SARS-CoV-2 from salivary samples. Submitted to ACS Analytical Chemistry in the year 2021.
    DOI: 10.26434/chemrxiv-2021-726hl View at publisher

Citation