The Fe addition as an effective treatment for improving the radiation resistance of fcc NixFe1-x single-crystal alloys
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2023-10
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
1-12
1-12
Series
Journal of Nuclear Materials, Volume 584
Abstract
In this work, five different compositions of fcc Ni and NixFe1-x single crystal alloys namely Ni, Ni0.88Fe0.12, Ni0.77Fe0.23, Ni0.62Fe0.38, Ni0.38Fe0.62 were irradiated by 1.5 MeV 58Ni ions at room temperature in a wide fluence range (4 × 1013 to 4 × 1015 ions/cm2). The role of Fe addition on the radiation resistance of the NixFe1-x single crystals was studied by transmission electron microscopy (TEM), ion channeling technique (RBS/C) and nanoindentation techniques. The Multi-Step Damage Accumulation analysis revealed the cross-sections for damage formation significantly decreases for Ni0.38Fe0.62 and Ni0.62Fe0.38 as compared to that in pure Ni single crystal, which is consistent with RBS/C and TEM results. The results of nanoindentation show that Ni0.62Fe0.38 alloy possesses the highest hardness (2.96 GPa) among the other compositions in a pristine state. To interpret this result, hybrid Monte Carlo/ Molecular dynamics simulations were used to check the presence of the ordered crystal phase structure for NixFe1-x binary alloys. The simulation results have shown that depending on the iron content, we deal with different amounts of FeNi3 (L12) phase. This result revealed that in Ni0.62Fe0.38 alloy, nanoprecipitate FeNi3 (L12) phase (around 20%) is formed inside the disordered matrix, which could be one of the main reasons for the high hardness of this alloy before irradiation. Additionally, we have found adding iron reduced the number and size of the defects (as a result of ion irradiation) in NixFe1-x because the Fe element is more stable than Ni, which results from the electron configuration of both elements in the excited state. Therefore, the more iron in the material, the fewer defects are created.Description
Funding Information: Financial support from the National Science Center , Poland through the PRELUDIUM 21 Program in the frame of grant no. 2022/45/N/ST5/02980 is gratefully acknowledged. This work was co-financed by the Polish Ministry of Education and Sciences through the project RaDeNiS ( 5003/LATR/2019/0 ). We acknowledge support from the European Union Horizon 2020 research and innovation program under NOMATEN Teaming grant agreement No. 857470 and from the European Regional Development Fund via the Foundation for Polish Science International Research Agenda Plus Program grant No. MAB PLUS/2018/8 . The Research Council of Norway is acknowledged for the support of the Norwegian Micro- and Nano-Fabrication Facility, NorFab , project number 295864 . | openaire: EC/H2020/857470/EU//NOMATEN
Keywords
fcc NiFe single crystals, MC/MD simulations, Nanoindentation, TEM, Ion channeling
Other note
Citation
Wyszkowska, E, Mieszczynski, C, Kurpaska, Azarov, A, Chromiński, W, Jóźwik, I, Esfandiarpour, A, Kosińska, A, Kalita, D, Diduszko, R, Jagielski, J, Nori, S T & Alava, M 2023, ' The Fe addition as an effective treatment for improving the radiation resistance of fcc Ni x Fe 1-x single-crystal alloys ', Journal of Nuclear Materials, vol. 584, 154565, pp. 1-12 . https://doi.org/10.1016/j.jnucmat.2023.154565