Joint Characterization of MM-Wave and CM-Wave Device-to-Device Fading Channels

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A4 Artikkeli konferenssijulkaisussa

Date

2018

Major/Subject

Mcode

Degree programme

Language

en

Pages

7
194-200

Series

2018 IEEE Military Communications Conference, MILCOM 2018, Volume 2019-October, IEEE Military Communications Conference proceedings

Abstract

Device-to-Device (D2D) wireless communications has many envisioned applications such as proximity-based networking, tactical communications and situation awareness of military personnel in a battlefield. The joint use of multiple frequency bands could provide further enhancement to existing D2D wireless system and localization architectures. However, the development of any suitable communication system with this capability will requires accurate propagation channel measurement and modeling to understand channel frequency dependencies in an environment in which the system will operate. In this paper, we present a detailed description of a propagation channel measurement campaign performed in an outdoor environment within the millimeter wave (mm-wave) 59 - 63 GHz and centimeter wave (cm-wave) 2 - 6 GHz frequency bands. The measurements were conducted for both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. We extracted (and compared) propagation channel parameters such as distance-dependent pathloss exponent (γ), shadowing gain (ξσ), root-mean-square (rms) delay spread (T rms ) and amplitude fading statistics to motivate a suitable channel model in both bands. The model developed can be used for realistic performance evaluations of devices operating in the cm-wave and/or mm-wave bands.

Description

Keywords

Other note

Citation

Sangodoyin, S, Virk, U T, Burghal, D, Haneda, K & Molisch, A F 2018, Joint Characterization of MM-Wave and CM-Wave Device-to-Device Fading Channels . in 2018 IEEE Military Communications Conference, MILCOM 2018 . vol. 2019-October, 8599827, IEEE Military Communications Conference proceedings, IEEE, pp. 194-200, IEEE Military Communications Conference, Los Angeles, California, United States, 29/10/2018 . https://doi.org/10.1109/MILCOM.2018.8599827