Analytical model including rotor eccentricity for bearingless synchronous reluctance motors

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
Conference article in proceedings
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2018-09-03
Major/Subject
Mcode
Degree programme
Language
en
Pages
7
Series
Proceedings of the 23rd International Conference on Electrical Machines, ICEM 2018
Abstract
This paper deals with modelling of rotor eccentricity in a dual three-phase winding bearingless synchronous reluctance motors (BSyRMs). The motor includes two separate sets of three-phase windings: one for torque production and the other one for radial force production. For this motor, an improved analytical model with linear magnetic material is presented. The accuracy of the model depends on the accuracy of the inverse-airgap function. Typically, a series expansion is used for approximating the inverse-airgap function. In order to make the main-winding inductances depend on the radial position, at least the first two terms have to be included in the expansion, enabling calculation of the radial forces caused by unbalanced magnetic pull. The improved model is applicable, e.g., for stability analysis, time-domain simulations, or developing real-time control methods.
Description
Keywords
dual-winding motor, eccentricity, inductance, inverse-airgap function, open-loop stability, radial force, unbalanced magnetic pull
Other note
Citation
Saarakkala , S E , Mukherjee , V , Sokolov , M , Hinkkanen , M & Belahcen , A 2018 , Analytical model including rotor eccentricity for bearingless synchronous reluctance motors . in Proceedings of the 23rd International Conference on Electrical Machines, ICEM 2018 . IEEE , pp. 1388-1394 , International Conference on Electrical Machines , Alexandroupoli , Greece , 03/09/2018 . https://doi.org/10.1109/ICELMACH.2018.8506892