Superhuman spatial hearing technology for ultrasonic frequencies
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021-12
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
Series
Scientific Reports, Volume 11, issue 1
Abstract
Ultrasonic sources are inaudible to humans, and while digital signal processing techniques are available to bring ultrasonic signals into the audible range, there are currently no systems which also simultaneously permit the listener to localise the sources through spatial hearing. Therefore, we describe a method whereby an in-situ listener with normal binaural hearing can localise ultrasonic sources in real-time; opening-up new applications, such as the monitoring of certain forms of wild life in their habitats and man-made systems. In this work, an array of ultrasonic microphones is mounted to headphones, and the spatial parameters of the ultrasonic sound-field are extracted. A pitch-shifted signal is then rendered to the headphones with spatial properties dictated by the estimated parameters. The processing provides the listener with the spatial cues that would normally occur if the acoustic wave produced by the source were to arrive at the listener having already been pitch-shifted. The results show that the localisation accuracy delivered by the proof-of-concept device implemented here is almost as good as with audible sources, as tested both in the laboratory and under conditions in the field.Description
Funding Information: The research has been supported by the Academy of Finland and Aalto University. Dr. Veronika Laine helped in locating the bats and identified the species. Publisher Copyright: © 2021, The Author(s).
Keywords
Other note
Citation
Pulkki, V, McCormack, L & Gonzalez, R 2021, ' Superhuman spatial hearing technology for ultrasonic frequencies ', Scientific Reports, vol. 11, no. 1, 11608 . https://doi.org/10.1038/s41598-021-90829-9