Broken Rotor Bar Fault Detection Using Machine Learning: Optimal Frequency Resolution

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKoveshnikov, Semenen_US
dc.contributor.authorEl Bouharrouti, Nadaen_US
dc.contributor.authorKudelina, Karolinaen_US
dc.contributor.authorNaseer, Muhammad Usmanen_US
dc.contributor.authorVaimann, Toomasen_US
dc.contributor.authorBelahcen, Anouaren_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorComputational Electromechanicsen
dc.contributor.organizationTallinn University of Technologyen_US
dc.date.accessioned2024-10-16T06:48:12Z
dc.date.available2024-10-16T06:48:12Z
dc.date.issued2024-10-10en_US
dc.description.abstractThis paper explores the optimal frequency resolution of the current spectra for detecting the broken rotor bar fault in induction motors with machine learning and motor current signature analysis. Conventional methods of broken rotor bar detection usually advocate for a higher frequency resolution in the motor current spectrum, which requires longer current signal measurements that are difficult and expensive to conduct. Thus, this work aims to identify the limitations to frequency resolution for successful broken rotor bar diagnosis when applying machine learning algorithms. The study also provides recommendations on the signal processing for feature extraction to enhance machine learning model performance. The machine learning algorithms used in the study are support vector machines, gradient boosting machines, and multilayer perceptron.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKoveshnikov, S, El Bouharrouti, N, Kudelina, K, Naseer, M U, Vaimann, T & Belahcen, A 2024, Broken Rotor Bar Fault Detection Using Machine Learning: Optimal Frequency Resolution . in Proceedings of the International Conference on Electrical Machines (ICEM) . International Conference on Electrical Machines, IEEE, pp. 1-6, International Conference on Electrical Machines, Turin, Italy, 01/09/2024 . https://doi.org/10.1109/ICEM60801.2024.10700228en
dc.identifier.doi10.1109/ICEM60801.2024.10700228en_US
dc.identifier.isbn979-8-3503-7060-7
dc.identifier.otherPURE UUID: d0596500-2693-40e0-af6d-8a4f63a36f17en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d0596500-2693-40e0-af6d-8a4f63a36f17en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85207513796&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/161539932/Final.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131240
dc.identifier.urnURN:NBN:fi:aalto-202410166764
dc.language.isoenen
dc.relation.ispartofProceedings of the International Conference on Electrical Machines (ICEM)
dc.relation.ispartofpp. 1-6
dc.relation.ispartofInternational Conference on Electrical Machinesen
dc.rightsopenAccessen
dc.subject.keywordBroken Rotor Baren_US
dc.subject.keywordElectric Machinesen_US
dc.subject.keywordFault Detectionen_US
dc.subject.keywordFrequency Resolutionen_US
dc.subject.keywordMachine Learningen_US
dc.titleBroken Rotor Bar Fault Detection Using Machine Learning: Optimal Frequency Resolutionen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files