VMS: Interactive Visualization to Support the Sensemaking and Selection of Predictive Models

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHe, Chenen_US
dc.contributor.authorRaj, Vishnuen_US
dc.contributor.authorMoen, Hansen_US
dc.contributor.authorGröhn, Tommien_US
dc.contributor.authorWang, Chenen_US
dc.contributor.authorPeltonen, Laura Mariaen_US
dc.contributor.authorKoivusalo, Sailaen_US
dc.contributor.authorMarttinen, Pekkaen_US
dc.contributor.authorJacucci, Giulioen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Marttinen P.en
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Artificial Intelligence and Machine Learning (AIML)en
dc.contributor.organizationUniversity of Helsinkien_US
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.contributor.organizationHarbin Engineering Universityen_US
dc.contributor.organizationUniversity of Turkuen_US
dc.contributor.organizationHelsinki University Central Hospitalen_US
dc.date.accessioned2024-05-15T07:52:52Z
dc.date.available2024-05-15T07:52:52Z
dc.date.issued2024-03-18en_US
dc.descriptionPublisher Copyright: © 2024 Owner/Author.
dc.description.abstractTo compare and select machine learning models, relying on performance measures alone may not always be sufficient. This is particularly the case where different subsets, features, and predicted results may vary in importance relative to the task at hand. Explanation and visualization techniques are required to support model sensemaking and informed decision-making. However, a review shows that existing systems are mostly designed for model developers and not evaluated with target users in their effectiveness. To address this issue, this research proposes an interactive visualization, VMS (Visualization for Model Sensemaking and Selection), for users of the model to compare and select predictive models. VMS integrates performance-, instance-, and feature-level analysis to evaluate models from multiple angles. Particularly, a feature view integrating the value and contribution of hundreds of features supports model comparison on local and global scales. We exemplified VMS for comparing models predicting patients' hospital length of stay through time-series health records and evaluated the prototype with 16 participants from the medical field. Results reveal evidence that VMS supports users to rationalize models in multiple ways and enables users to select the optimal models with a small sample size. User feedback suggests future directions on incorporating domain knowledge in model training, such as for different patient groups considering different sets of features as important.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHe, C, Raj, V, Moen, H, Gröhn, T, Wang, C, Peltonen, L M, Koivusalo, S, Marttinen, P & Jacucci, G 2024, VMS : Interactive Visualization to Support the Sensemaking and Selection of Predictive Models . in Proceedings of 2024 29th Annual Conference on Intelligent User Interfaces, IUI 2024 . ACM International Conference Proceeding Series, ACM, pp. 229-244, International Conference on Intelligent User Interfaces, Greenville, South Carolina, United States, 18/03/2024 . https://doi.org/10.1145/3640543.3645151en
dc.identifier.doi10.1145/3640543.3645151en_US
dc.identifier.isbn9798400705083
dc.identifier.otherPURE UUID: 60cd415d-6189-4dd5-8337-c2acace1512een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/60cd415d-6189-4dd5-8337-c2acace1512een_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85191005996&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/145821554/SCI_He_etal_IUI_2024.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127742
dc.identifier.urnURN:NBN:fi:aalto-202405153356
dc.language.isoenen
dc.relation.ispartofProceedings of 2024 29th Annual Conference on Intelligent User Interfaces, IUI 2024
dc.relation.ispartofpp. 229-244
dc.relation.ispartofInternational Conference on Intelligent User Interfacesen
dc.rightsopenAccessen
dc.subject.keywordinteractive machine learningen_US
dc.subject.keywordMIMIC-IVen_US
dc.subject.keywordXAIen_US
dc.titleVMS: Interactive Visualization to Support the Sensemaking and Selection of Predictive Modelsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files