VMS: Interactive Visualization to Support the Sensemaking and Selection of Predictive Models
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | He, Chen | en_US |
dc.contributor.author | Raj, Vishnu | en_US |
dc.contributor.author | Moen, Hans | en_US |
dc.contributor.author | Gröhn, Tommi | en_US |
dc.contributor.author | Wang, Chen | en_US |
dc.contributor.author | Peltonen, Laura Maria | en_US |
dc.contributor.author | Koivusalo, Saila | en_US |
dc.contributor.author | Marttinen, Pekka | en_US |
dc.contributor.author | Jacucci, Giulio | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Marttinen P. | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) | en |
dc.contributor.organization | University of Helsinki | en_US |
dc.contributor.organization | Department of Computer Science | en_US |
dc.contributor.organization | Harbin Engineering University | en_US |
dc.contributor.organization | University of Turku | en_US |
dc.contributor.organization | Helsinki University Central Hospital | en_US |
dc.date.accessioned | 2024-05-15T07:52:52Z | |
dc.date.available | 2024-05-15T07:52:52Z | |
dc.date.issued | 2024-03-18 | en_US |
dc.description | Publisher Copyright: © 2024 Owner/Author. | |
dc.description.abstract | To compare and select machine learning models, relying on performance measures alone may not always be sufficient. This is particularly the case where different subsets, features, and predicted results may vary in importance relative to the task at hand. Explanation and visualization techniques are required to support model sensemaking and informed decision-making. However, a review shows that existing systems are mostly designed for model developers and not evaluated with target users in their effectiveness. To address this issue, this research proposes an interactive visualization, VMS (Visualization for Model Sensemaking and Selection), for users of the model to compare and select predictive models. VMS integrates performance-, instance-, and feature-level analysis to evaluate models from multiple angles. Particularly, a feature view integrating the value and contribution of hundreds of features supports model comparison on local and global scales. We exemplified VMS for comparing models predicting patients' hospital length of stay through time-series health records and evaluated the prototype with 16 participants from the medical field. Results reveal evidence that VMS supports users to rationalize models in multiple ways and enables users to select the optimal models with a small sample size. User feedback suggests future directions on incorporating domain knowledge in model training, such as for different patient groups considering different sets of features as important. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 16 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | He, C, Raj, V, Moen, H, Gröhn, T, Wang, C, Peltonen, L M, Koivusalo, S, Marttinen, P & Jacucci, G 2024, VMS : Interactive Visualization to Support the Sensemaking and Selection of Predictive Models . in Proceedings of 2024 29th Annual Conference on Intelligent User Interfaces, IUI 2024 . ACM International Conference Proceeding Series, ACM, pp. 229-244, International Conference on Intelligent User Interfaces, Greenville, South Carolina, United States, 18/03/2024 . https://doi.org/10.1145/3640543.3645151 | en |
dc.identifier.doi | 10.1145/3640543.3645151 | en_US |
dc.identifier.isbn | 9798400705083 | |
dc.identifier.other | PURE UUID: 60cd415d-6189-4dd5-8337-c2acace1512e | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/60cd415d-6189-4dd5-8337-c2acace1512e | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85191005996&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/145821554/SCI_He_etal_IUI_2024.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/127742 | |
dc.identifier.urn | URN:NBN:fi:aalto-202405153356 | |
dc.language.iso | en | en |
dc.relation.ispartof | Proceedings of 2024 29th Annual Conference on Intelligent User Interfaces, IUI 2024 | |
dc.relation.ispartof | pp. 229-244 | |
dc.relation.ispartof | International Conference on Intelligent User Interfaces | en |
dc.rights | openAccess | en |
dc.subject.keyword | interactive machine learning | en_US |
dc.subject.keyword | MIMIC-IV | en_US |
dc.subject.keyword | XAI | en_US |
dc.title | VMS: Interactive Visualization to Support the Sensemaking and Selection of Predictive Models | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |