A Two-Stage U-Net for High-Fidelity Denoising of Historical Recordings

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMoliner, Eloien_US
dc.contributor.authorVälimäki, Vesaen_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorAudio Signal Processingen
dc.date.accessioned2022-10-19T06:46:53Z
dc.date.available2022-10-19T06:46:53Z
dc.date.issued2022en_US
dc.descriptionFunding Information: This research is part of the activities of the Nordic Sound and Music Computing Network-NordicSMC (NordForsk project no. 86892). Publisher Copyright: © 2022 IEEE
dc.description.abstractEnhancing the sound quality of historical music recordings is a long-standing problem. This paper presents a novel denoising method based on a fully-convolutional deep neural network. A two-stage U-Net model architecture is designed to model and suppress the degradations with high fidelity. The method processes the time-frequency representation of audio, and is trained using realistic noisy data to jointly remove hiss, clicks, thumps, and other common additive disturbances from old analog discs. The proposed model outperforms previous methods in both objective and subjective metrics. The results of a formal blind listening test show that real gramophone recordings denoised with this method have significantly better quality than the baseline methods. This study shows the importance of realistic training data and the power of deep learning in audio restoration.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.extent841-845
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMoliner, E & Välimäki, V 2022, A Two-Stage U-Net for High-Fidelity Denoising of Historical Recordings . in 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings . Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, pp. 841-845, IEEE International Conference on Acoustics, Speech, and Signal Processing, Singapore, Singapore, 23/05/2022 . https://doi.org/10.1109/ICASSP43922.2022.9746977en
dc.identifier.doi10.1109/ICASSP43922.2022.9746977en_US
dc.identifier.isbn9781665405409
dc.identifier.otherPURE UUID: cf3cc4fa-6c65-408d-81a6-dee28e4f77c9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cf3cc4fa-6c65-408d-81a6-dee28e4f77c9en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85129466080&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/89133321/Moliner_Denoising_ICASSP2022.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/117280
dc.identifier.urnURN:NBN:fi:aalto-202210196068
dc.language.isoenen
dc.relation.ispartofIEEE International Conference on Acoustics, Speech, and Signal Processingen
dc.relation.ispartofseries2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedingsen
dc.rightsopenAccessen
dc.subject.keywordAudio systemsen_US
dc.subject.keyworddeep learningen_US
dc.subject.keywordmusicen_US
dc.titleA Two-Stage U-Net for High-Fidelity Denoising of Historical Recordingsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files