A Two-Stage U-Net for High-Fidelity Denoising of Historical Recordings
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Moliner, Eloi | en_US |
dc.contributor.author | Välimäki, Vesa | en_US |
dc.contributor.department | Department of Signal Processing and Acoustics | en |
dc.contributor.groupauthor | Audio Signal Processing | en |
dc.date.accessioned | 2022-10-19T06:46:53Z | |
dc.date.available | 2022-10-19T06:46:53Z | |
dc.date.issued | 2022 | en_US |
dc.description | Funding Information: This research is part of the activities of the Nordic Sound and Music Computing Network-NordicSMC (NordForsk project no. 86892). Publisher Copyright: © 2022 IEEE | |
dc.description.abstract | Enhancing the sound quality of historical music recordings is a long-standing problem. This paper presents a novel denoising method based on a fully-convolutional deep neural network. A two-stage U-Net model architecture is designed to model and suppress the degradations with high fidelity. The method processes the time-frequency representation of audio, and is trained using realistic noisy data to jointly remove hiss, clicks, thumps, and other common additive disturbances from old analog discs. The proposed model outperforms previous methods in both objective and subjective metrics. The results of a formal blind listening test show that real gramophone recordings denoised with this method have significantly better quality than the baseline methods. This study shows the importance of realistic training data and the power of deep learning in audio restoration. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 5 | |
dc.format.extent | 841-845 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Moliner, E & Välimäki, V 2022, A Two-Stage U-Net for High-Fidelity Denoising of Historical Recordings . in 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings . Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, IEEE, pp. 841-845, IEEE International Conference on Acoustics, Speech, and Signal Processing, Singapore, Singapore, 23/05/2022 . https://doi.org/10.1109/ICASSP43922.2022.9746977 | en |
dc.identifier.doi | 10.1109/ICASSP43922.2022.9746977 | en_US |
dc.identifier.isbn | 9781665405409 | |
dc.identifier.other | PURE UUID: cf3cc4fa-6c65-408d-81a6-dee28e4f77c9 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/cf3cc4fa-6c65-408d-81a6-dee28e4f77c9 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85129466080&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/89133321/Moliner_Denoising_ICASSP2022.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/117280 | |
dc.identifier.urn | URN:NBN:fi:aalto-202210196068 | |
dc.language.iso | en | en |
dc.relation.ispartof | IEEE International Conference on Acoustics, Speech, and Signal Processing | en |
dc.relation.ispartofseries | 2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings | en |
dc.rights | openAccess | en |
dc.subject.keyword | Audio systems | en_US |
dc.subject.keyword | deep learning | en_US |
dc.subject.keyword | music | en_US |
dc.title | A Two-Stage U-Net for High-Fidelity Denoising of Historical Recordings | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |