Bayesian learning of feature spaces for multitask regression
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Sevilla-Salcedo, Carlos | en_US |
dc.contributor.author | Gallardo-Antolín, Ascensión | en_US |
dc.contributor.author | Gómez-Verdejo, Vanessa | en_US |
dc.contributor.author | Parrado-Hernández, Emilio | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.organization | Universidad Carlos III de Madrid | en_US |
dc.date.accessioned | 2024-09-04T06:35:54Z | |
dc.date.available | 2024-09-04T06:35:54Z | |
dc.date.issued | 2024-11 | en_US |
dc.description | Publisher Copyright: © 2024 The Author(s) | |
dc.description.abstract | This paper introduces a novel approach to learn multi-task regression models with constrained architecture complexity. The proposed model, named RFF-BLR, consists of a randomised feedforward neural network with two fundamental characteristics: a single hidden layer whose units implement the random Fourier features that approximate an RBF kernel, and a Bayesian formulation that optimises the weights connecting the hidden and output layers. The RFF-based hidden layer inherits the robustness of kernel methods. The Bayesian formulation enables promoting multioutput sparsity: all tasks interplay during the optimisation to select a compact subset of the hidden layer units that serve as common non-linear mapping for every tasks. The experimental results show that the RFF-BLR framework can lead to significant performance improvements compared to the state-of-the-art methods in multitask nonlinear regression, especially in small-sized training dataset scenarios. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 16 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Sevilla-Salcedo, C, Gallardo-Antolín, A, Gómez-Verdejo, V & Parrado-Hernández, E 2024, ' Bayesian learning of feature spaces for multitask regression ', Neural Networks, vol. 179, 106619, pp. 1-16 . https://doi.org/10.1016/j.neunet.2024.106619 | en |
dc.identifier.doi | 10.1016/j.neunet.2024.106619 | en_US |
dc.identifier.issn | 0893-6080 | |
dc.identifier.issn | 1879-2782 | |
dc.identifier.other | PURE UUID: d1bfab44-2a7c-4f23-92c5-b23815213cc7 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/d1bfab44-2a7c-4f23-92c5-b23815213cc7 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85201446104&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/156116870/Bayesian_learning_of_feature_spaces_for_multitask_regression.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/130633 | |
dc.identifier.urn | URN:NBN:fi:aalto-202409046195 | |
dc.language.iso | en | en |
dc.publisher | Elsevier Ltd | |
dc.relation.ispartofseries | Neural Networks | |
dc.relation.ispartofseries | Volume 179, pp. 1-16 | |
dc.rights | openAccess | en |
dc.subject.keyword | Bayesian regression | en_US |
dc.subject.keyword | Extreme learning machine | en_US |
dc.subject.keyword | Kernel methods | en_US |
dc.subject.keyword | Multitask regression | en_US |
dc.subject.keyword | Random fourier features | en_US |
dc.subject.keyword | Random vector functional link networks | en_US |
dc.title | Bayesian learning of feature spaces for multitask regression | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |