Bayesian learning of feature spaces for multitask regression

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSevilla-Salcedo, Carlosen_US
dc.contributor.authorGallardo-Antolín, Ascensiónen_US
dc.contributor.authorGómez-Verdejo, Vanessaen_US
dc.contributor.authorParrado-Hernández, Emilioen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.organizationUniversidad Carlos III de Madriden_US
dc.date.accessioned2024-09-04T06:35:54Z
dc.date.available2024-09-04T06:35:54Z
dc.date.issued2024-11en_US
dc.descriptionPublisher Copyright: © 2024 The Author(s)
dc.description.abstractThis paper introduces a novel approach to learn multi-task regression models with constrained architecture complexity. The proposed model, named RFF-BLR, consists of a randomised feedforward neural network with two fundamental characteristics: a single hidden layer whose units implement the random Fourier features that approximate an RBF kernel, and a Bayesian formulation that optimises the weights connecting the hidden and output layers. The RFF-based hidden layer inherits the robustness of kernel methods. The Bayesian formulation enables promoting multioutput sparsity: all tasks interplay during the optimisation to select a compact subset of the hidden layer units that serve as common non-linear mapping for every tasks. The experimental results show that the RFF-BLR framework can lead to significant performance improvements compared to the state-of-the-art methods in multitask nonlinear regression, especially in small-sized training dataset scenarios.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSevilla-Salcedo, C, Gallardo-Antolín, A, Gómez-Verdejo, V & Parrado-Hernández, E 2024, ' Bayesian learning of feature spaces for multitask regression ', Neural Networks, vol. 179, 106619, pp. 1-16 . https://doi.org/10.1016/j.neunet.2024.106619en
dc.identifier.doi10.1016/j.neunet.2024.106619en_US
dc.identifier.issn0893-6080
dc.identifier.issn1879-2782
dc.identifier.otherPURE UUID: d1bfab44-2a7c-4f23-92c5-b23815213cc7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d1bfab44-2a7c-4f23-92c5-b23815213cc7en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85201446104&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/156116870/Bayesian_learning_of_feature_spaces_for_multitask_regression.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/130633
dc.identifier.urnURN:NBN:fi:aalto-202409046195
dc.language.isoenen
dc.publisherElsevier Ltd
dc.relation.ispartofseriesNeural Networks
dc.relation.ispartofseriesVolume 179, pp. 1-16
dc.rightsopenAccessen
dc.subject.keywordBayesian regressionen_US
dc.subject.keywordExtreme learning machineen_US
dc.subject.keywordKernel methodsen_US
dc.subject.keywordMultitask regressionen_US
dc.subject.keywordRandom fourier featuresen_US
dc.subject.keywordRandom vector functional link networksen_US
dc.titleBayesian learning of feature spaces for multitask regressionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files