Beyond Top-Grasps Through Scene Completion

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLundell, Jensen_US
dc.contributor.authorVerdoja, Francescoen_US
dc.contributor.authorKyrki, Villeen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorIntelligent Roboticsen
dc.date.accessioned2020-10-30T12:45:15Z
dc.date.available2020-10-30T12:45:15Z
dc.date.issued2020en_US
dc.description.abstractCurrent end-to-end grasp planning methods propose grasps in the order of seconds that attain high grasp success rates on a diverse set of objects, but often by constraining the workspace to top-grasps. In this work, we present a method that allows end-to-end top-grasp planning methods to generate full six-degree-of-freedom grasps using a single RGBD view as input. This is achieved by estimating the complete shape of the object to be grasped, then simulating different viewpoints of the object, passing the simulated viewpoints to an end-to-end grasp generation method, and finally executing the overall best grasp. The method was experimentally validated on a Franka Emika Panda by comparing 429 grasps generated by the state-of-the-art Fully Convolutional Grasp Quality CNN, both on simulated and real camera images. The results show statistically significant improvements in terms of grasp success rate when using simulated images over real camera images, especially when the real camera viewpoint is angled. Code and video are available at https://irobotics.aalto.fi/beyond-topgrasps-through-scene-completion/.en
dc.description.versionPeer revieweden
dc.format.extent7
dc.format.extent545-551
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLundell, J, Verdoja, F & Kyrki, V 2020, Beyond Top-Grasps Through Scene Completion . in Proceedings of the IEEE Conference on Robotics and Automation, ICRA 2020 ., 9197320, IEEE International Conference on Robotics and Automation, IEEE, pp. 545-551, IEEE International Conference on Robotics and Automation, Paris, France, 31/05/2020 . https://doi.org/10.1109/ICRA40945.2020.9197320en
dc.identifier.doi10.1109/ICRA40945.2020.9197320en_US
dc.identifier.isbn978-1-7281-7395-5
dc.identifier.issn2152-4092
dc.identifier.issn2379-9552
dc.identifier.otherPURE UUID: 58697949-871e-463d-9011-36a47e371593en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/58697949-871e-463d-9011-36a47e371593en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85092724276&partnerID=8YFLogxKen_US
dc.identifier.otherPURE LINK: https://arxiv.org/pdf/1909.12908.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/41265813/ELEC_Lundell_etal_Beyond_Top_Grasps_ICRA_2020_acceptedauthormanuscript.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/47319
dc.identifier.urnURN:NBN:fi:aalto-202010306202
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofIEEE International Conference on Robotics and Automationen
dc.relation.ispartofseriesProceedings of the IEEE Conference on Robotics and Automation, ICRA 2020en
dc.relation.ispartofseriesIEEE International Conference on Robotics and Automationen
dc.rightsopenAccessen
dc.subject.keywordShapeen_US
dc.subject.keywordCamerasen_US
dc.subject.keywordGraspingen_US
dc.subject.keywordPlanningen_US
dc.subject.keywordRobot vision systemsen_US
dc.subject.keywordPipelinesen_US
dc.titleBeyond Top-Grasps Through Scene Completionen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files