Towards an Aggregator that Exploits Big Data to Bid on Frequency Containment Reserve Market

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGiovanelli, Christianen_US
dc.contributor.authorLiu, Xinen_US
dc.contributor.authorSierla, Seppoen_US
dc.contributor.authorVyatkin, Valeriyen_US
dc.contributor.authorIchise, Ryutaroen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorInformation Technologies in Industrial Automationen
dc.contributor.organizationNational Institute of Advanced Industrial Science and Technologyen_US
dc.contributor.organizationNational Institute of Informaticsen_US
dc.date.accessioned2018-12-10T10:35:25Z
dc.date.available2018-12-10T10:35:25Z
dc.date.issued2017-11-01en_US
dc.description.abstractThe increased penetration of distributed and volatile renewable generation requires the demand-side to be actively involved in energy balancing operations. This paper proposes a solution in which big data and machine learning methods are employed to enhance the capabilities of a Virtual Power Plant to participate and intelligently bid into a demand response energy market. The energy market being investigated consists of the frequency containment reserve market. First, we define the core decision-making required to overcome the uncertainties in the frequency containment reserve market participation for a Virtual Power Plant. Then, we focus on forecasting the frequency containment reserve prices for the day-ahead. We analyze the price data, and identify and collect the relevant features for the prediction of the prices. In addition, we select several regression analysis methods to be utilized for the prediction. Finally, we evaluate the performance of the implemented methods by executing several experiments, and compare the the performance with the performance of a state of the art autoregression method.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGiovanelli, C, Liu, X, Sierla, S, Vyatkin, V & Ichise, R 2017, Towards an Aggregator that Exploits Big Data to Bid on Frequency Containment Reserve Market . in Proceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society . Proceedings of the Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp. 7514-7519, Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29/10/2017 . https://doi.org/10.1109/IECON.2017.8217316en
dc.identifier.doi10.1109/IECON.2017.8217316en_US
dc.identifier.isbn9781538611272
dc.identifier.issn1553-572X
dc.identifier.otherPURE UUID: f36bbb5b-df24-44bc-9f94-80756f133e5fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f36bbb5b-df24-44bc-9f94-80756f133e5fen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/25674652/Giovanelli_etal_IECON_2017_7514.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/35355
dc.identifier.urnURN:NBN:fi:aalto-201812106370
dc.language.isoenen
dc.relation.ispartofAnnual Conference of the IEEE Industrial Electronics Societyen
dc.relation.ispartofseriesProceedings IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Societyen
dc.relation.ispartofseriespp. 7514-7519en
dc.relation.ispartofseriesProceedings of the Annual Conference of the IEEE Industrial Electronics Societyen
dc.rightsopenAccessen
dc.rights.copyright© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.subject.keyworddemand responseen_US
dc.subject.keywordenergy marketen_US
dc.subject.keywordfrequency containment reserveen_US
dc.subject.keywordmachine learningen_US
dc.subject.keywordprice forecastingen_US
dc.subject.keywordregression analysisen_US
dc.subject.keywordsmart griden_US
dc.titleTowards an Aggregator that Exploits Big Data to Bid on Frequency Containment Reserve Marketen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files