Resynthesis of Spatial Room Impulse Response Tails With Anisotropic Multi-Slope Decays
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
Series
Journal of the Audio Engineering Society, Volume 70, issue 6, pp. 526-538
Abstract
Spatial room impulse responses (SRIRs) capture room acoustics with directional information. SRIRs measured in coupled rooms and spaces with non-uniform absorption distribution may exhibit anisotropic reverberation decays and multiple decay slopes. However, noisy measurements with low signal-to-noise ratios pose issues in analysis and reproduction in practice. This paper presents a method for resynthesis of the late decay of anisotropic SRIRs, effectively removing noise from SRIR measurements. The method accounts for both multi-slope decays and directional reverberation. A spherical filter bank extracts directionally constrained signals from Ambisonic input, which are then analyzed and parameterized in terms of multiple exponential decays and a noise floor. The noisy late reverberation is then resynthesized from the estimated parameters using modal synthesis, and the restored SRIR is reconstructed as Ambisonic signals. The method is evaluated both numerically and perceptually, which shows that SRIRs can be denoised with minimal error as long as parts of the decay slope are above the noise level, with signal-to-noise ratios as low as 40 dB in the presented experiment. The method can be used to increase the perceived spatial audio quality of noise-impaired SRIRs.Description
Keywords
Other note
Citation
Hold, C, McKenzie, T, Götz, G, Schlecht, S & Pulkki, V 2022, 'Resynthesis of Spatial Room Impulse Response Tails With Anisotropic Multi-Slope Decays', Journal of the Audio Engineering Society, vol. 70, no. 6, pp. 526-538. https://doi.org/10.17743/jaes.2022.0017