Flue Dust Behaviour in FSF-Arsenic Condensation in Offgas Line Conditions
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2024-07-03
Major/Subject
Mcode
Degree programme
Language
en
Pages
7
Series
E3S Web of Conferences, Volume 543
Abstract
The suspension smelting oxidation step has favourable conditions to generate chemical flue dust from the low-boiling elements of the feed mixture due to the high particle temperatures in the reaction shaft where combusting sulphide mineral particles reach temperatures above the melting point of magnetite. Arsenic, antimony, lead, and zinc are common impurity elements of high volatility in copper concentrates. They tend to accumulate in the flue dust due to the high volatility and closed mode of the flue dust circulation practiced in most industrial smelting-converting processes. Then, the only outlets for the volatile impurities are the anodes and the discard slag. A separate flue dust treatment for impurity removal is an option but it creates an additional step for the smelting plant and cost in the processing. When the concentrate grades decrease, and their impurity levels rise this outlet for the trace elements may become necessary. The arsenic condensation mechanisms in dust-free conditions in the copper flash smelting process gas train have been recently studied in SO2-Air-N2 gas mixtures. It seems that the formation mechanism of arsenic-containing dust deposits is kinetically constrained, and their chemistries are influenced by the condensation temperature and atmosphere.Description
Publisher Copyright: © The Authors, published by EDP Sciences, 2024.
Keywords
Other note
Citation
Taskinen, P, Wan, X & Sukhomlinov, D 2024, ' Flue Dust Behaviour in FSF-Arsenic Condensation in Offgas Line Conditions ', E3S Web of Conferences, vol. 543, 02001 . https://doi.org/10.1051/e3sconf/202454302001