Niimpy : A toolbox for behavioral data analysis

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorIkäheimonen, Arsien_US
dc.contributor.authorTriana, Ana M.en_US
dc.contributor.authorLuong, Nguyenen_US
dc.contributor.authorZiaei, Amirmohammaden_US
dc.contributor.authorRantaharju, Jarnoen_US
dc.contributor.authorDarst, Richarden_US
dc.contributor.authorAledavood, Talayehen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorLecturer Aledavood Talayeh groupen
dc.contributor.groupauthorComputer Science Lecturersen
dc.contributor.groupauthorComputer Science - Computational Life Sciences (CSLife)en
dc.contributor.organizationDepartment of Computer Scienceen_US
dc.date.accessioned2023-08-23T06:08:03Z
dc.date.available2023-08-23T06:08:03Z
dc.date.issued2023-07en_US
dc.descriptionFunding Information: We thank Professor Jari Saramäki for providing valuable feedback. We also thank Aalto Science-IT for providing computational resources and Aalto Research Software Engineers for their support. We thank Anna Hakala for their help with the project in its early stages. TA acknowledges the support of Professor Erkki Isometsä and other collaborators in the MoMo-Mood project, which has motivated the creation of the Niimpy toolbox. Publisher Copyright: © 2023 The Author(s)
dc.description.abstractBehavioral studies using personal digital devices typically produce rich longitudinal datasets of mixed data types. These data provide information about the behavior of users of these devices in real-time and in the users’ natural environments. Analyzing the data requires multidisciplinary expertise and dedicated software. Currently, no generalizable, device-agnostic, freely-available software exists within Python scientific computing ecosystem to preprocess and analyze such data. This paper introduces a Python package, Niimpy, for analyzing digital behavioral data. The Niimpy toolbox is a user-friendly open-source package that can quickly be expanded and adapted to specific research requirements. The toolbox facilitates the analysis phase by offering tools for preprocessing, extracting features, and exploring the data. It also aims to educate the user on behavioral data analysis and promotes open science practices. Over time, Niimpy will expand with new data analysis features developed by the core group, new users, and developers. Niimpy can help the fast-growing number of researchers with diverse backgrounds who collect data from personal and consumer digital devices to systematically and efficiently analyze the data and extract useful information. This novel information is vital for answering research questions in various fields, from medicine to psychology, sociology, and others.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationIkäheimonen, A, Triana, A M, Luong, N, Ziaei, A, Rantaharju, J, Darst, R & Aledavood, T 2023, ' Niimpy : A toolbox for behavioral data analysis ', SoftwareX, vol. 23, 101472 . https://doi.org/10.1016/j.softx.2023.101472en
dc.identifier.doi10.1016/j.softx.2023.101472en_US
dc.identifier.issn2352-7110
dc.identifier.otherPURE UUID: 6b8bd205-1c19-402a-9be6-c69888c91950en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/6b8bd205-1c19-402a-9be6-c69888c91950en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85165533123&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/118762639/Niimpy_A_toolbox_for_behavioral_data_analysis.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122646
dc.identifier.urnURN:NBN:fi:aalto-202308234992
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesSoftwareXen
dc.relation.ispartofseriesVolume 23en
dc.rightsopenAccessen
dc.subject.keywordData analysis toolboxen_US
dc.subject.keywordDigital behavioral studiesen_US
dc.subject.keywordMobile sensingen_US
dc.subject.keywordPython packageen_US
dc.titleNiimpy : A toolbox for behavioral data analysisen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files