BiVO4/TiO2 core-shell heterostructure: wide range optical absorption and enhanced photoelectrochemical and photocatalytic performance
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-09
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Materials Today Chemistry, Volume 17
Abstract
In the present study, pristine BiVO4, TiO2 and BiVO4/TiO2 core-shell heterostructured nanoparticles are prepared by hydrothermal methods and studied for structural, morphological, optical, photoelectrochemical water splitting and photocatalytic degradation of methylene blue as an organic pollutant. Both pristine BiVO4 and TiO2 exhibit poor PEC and PC performance under visible light illumination. However, an enhanced PEC and PC activity in BiVO4/TiO2 core-shell heterostructure is observed due to high solar energy absorption and superior charge separation properties in core-shell nanoparticles. The photoelectrode prepared using BiVO4/TiO2 core-shell nanoparticles exhibit a photocathode behavior and produced cathodic photocurrent, however, the pristine BiVO4 and TiO2 photoelectrodes act as photoanode and produced anodic photocurrent. This behavior of change in current direction is also observe in the Mott-Schottky analysis where the BiVO4/TiO2 core-shell nanoparticles photoelectrode exhibits the positive slow showing p-type semiconducting behavior. The change in cathodic photoresponse in core-shell nanoparticles in comparison to anodic photoresponse of BiVO4 and TiO2 nanoparticles is explained in terms of the variations in the work function values. These results highlight the advantages of core-shell nanoparticle of suitable materials for photocatalytic and photoelectrochemical applications.Description
Keywords
BiVO, Core-shell heterostructures, Electronic properties, Nano TiO, Optical, Photocatalysis
Other note
Citation
Mehta, M, Krishnamurthy, S, Basu, S, Nixon, T P & Singh, A P 2020, ' BiVO 4 /TiO 2 core-shell heterostructure : wide range optical absorption and enhanced photoelectrochemical and photocatalytic performance ', Materials Today Chemistry, vol. 17, 100283 . https://doi.org/10.1016/j.mtchem.2020.100283