Continuous-Discrete von Mises-Fisher Filtering on S2 for Reference Vector Tracking

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTronarp, Filipen_US
dc.contributor.authorHostettler, Rolanden_US
dc.contributor.authorSärkkä, Simoen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorSensor Informatics and Medical Technologyen
dc.date.accessioned2018-12-10T10:26:09Z
dc.date.available2018-12-10T10:26:09Z
dc.date.issued2018-09-05en_US
dc.description.abstractThis paper is concerned with tracking of reference vectors in the continuous-discrete-time setting. For this end, an Itô stochastic differential equation, using the gyroscope as input, is formulated that explicitly accounts for the geometry of the problem. The filtering problem is solved by restricting the prediction and filtering distributions to the von Mises-Fisher class, resulting in ordinary differential equations for the parameters. A strategy for approximating Bayesian updates and marginal likelihoods is developed for the class of conditionally spherical measurement distributions' which is realistic for sensors such as accelerometers and magnetometers, and includes robust likelihoods. Furthermore, computationally efficient and numerically robust implementations are presented. The method is compared to other state-of-the-art filters in simulation experiments involving tracking of the local gravity vector. Additionally, the methodology is demonstrated in the calibration of a smartphone's accelerometer and magnetometer. Lastly, the method is compared to state-of-the-art in gravity vector tracking for smartphones in two use cases, where it is shown to be more robust to unmodeled accelerations.en
dc.description.versionPeer revieweden
dc.format.extent8
dc.format.extent1345-1352
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTronarp, F, Hostettler, R & Särkkä, S 2018, Continuous-Discrete von Mises-Fisher Filtering on S 2 for Reference Vector Tracking . in Proceedings of the 21st International Conference on Information Fusion, FUSION 2018 ., 8455299, IEEE, pp. 1345-1352, International Conference on Information Fusion, Cambridge, United Kingdom, 10/07/2018 . https://doi.org/10.23919/ICIF.2018.8455299en
dc.identifier.doi10.23919/ICIF.2018.8455299en_US
dc.identifier.isbn9780996452762
dc.identifier.otherPURE UUID: aa55fa80-be5c-44f0-81e6-d70f3109d924en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/aa55fa80-be5c-44f0-81e6-d70f3109d924en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85054094731&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/29617917/2018_fusion_vmf.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/35198
dc.identifier.urnURN:NBN:fi:aalto-201812106213
dc.language.isoenen
dc.relation.ispartofInternational Conference on Information Fusionen
dc.relation.ispartofseriesProceedings of the 21st International Conference on Information Fusion, FUSION 2018en
dc.rightsopenAccessen
dc.subject.keywordDirectional statisticsen_US
dc.subject.keywordrobust filteringen_US
dc.subject.keywordsensor calibrationen_US
dc.subject.keywordvon Mises-Fisher distributionen_US
dc.titleContinuous-Discrete von Mises-Fisher Filtering on S2 for Reference Vector Trackingen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files