Characterizing the metric compactification of Lp spaces by random measures

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-04

Major/Subject

Mcode

Degree programme

Language

en

Pages

17

Series

Annals of Functional Analysis, articlenumber AFA-D-19-00059

Abstract

We present a complete characterization of the metric compactification of Lp spaces for 1≤p<∞. Each element of the metric compactification of Lp is represented by a random measure on a certain Polish space. By way of illustration, we revisit the Lp-mean ergodic theorem for 1<p<∞, and Alspach’s example of an isometry on a weakly compact convex subset of L1 with no fixed points.

Description

Keywords

Mathematics - Functional Analysis, Mathematics - Metric Geometry, Mathematics - Probability, 54D35, 46E30, 60G57

Other note

Citation

Gutiérrez, A W 2020, ' Characterizing the metric compactification of Lp spaces by random measures ', Annals of Functional Analysis, vol. 11, no. 2, AFA-D-19-00059, pp. 227-243 . https://doi.org/10.1007/s43034-019-00024-1