Fuchsian codes with arbitrarily high code rates
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
17
Series
Journal of Pure and Applied Algebra, Volume 220, issue 1, pp. 180-196
Abstract
Recently, Fuchsian codes have been proposed in Blanco-Chacon et al. (2014) [2] for communication over channels subject to additive white Gaussian noise (AWGN). The two main advantages of Fuchsian codes are their ability to compress information, i.e., high code rate, and their logarithmic decoding complexity. In this paper, we improve the first property further by constructing Fuchsian codes with arbitrarily high code rates while maintaining logarithmic decoding complexity. Namely, in the case of Fuchsian groups derived from quaternion algebras over totally real fields we obtain a code rate that is proportional to the degree of the base field. In particular, we consider arithmetic Fuchsian groups of signature (1; e) to construct explicit codes having code rate six, meaning that we can transmit six independent integers during one channel use. (C) 2015 Elsevier B.V. All rights reserved.Description
Keywords
Other note
Citation
Blanco-Chacon, I, Hollanti, C, Alsina, M & Remón, D 2016, 'Fuchsian codes with arbitrarily high code rates', Journal of Pure and Applied Algebra, vol. 220, no. 1, pp. 180-196. https://doi.org/10.1016/j.jpaa.2015.06.005