Elicitation of Non-Linearity from Expert Drawing

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorPeltola, Tomi
dc.contributor.authorChauhan, Rohan
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.supervisorKaski, Samuel
dc.date.accessioned2019-06-23T15:07:08Z
dc.date.available2019-06-23T15:07:08Z
dc.date.issued2019-06-17
dc.description.abstractMachine learning methods do not perform very well with little data because there is not enough information to learn. The choice is to either obtain more data or elicit knowledge from an expert. Obtaining more data might be infeasible because of the associated cost or required time. In such cases, we opt for expert knowledge elicitation. Current expert knowledge elicitation methods either query the user for data points or regarding the relevance of parameters. However, there is no method which allows expressing the non-linearity intuitively without requiring knowledge of Bayesian statistics. We propose expert knowledge elicitation through drawing where the expert draws the fit through data points. We then combine the observed data and drawing data to select the right kernel for a Gaussian process. We also conduct a user study for testing the usability of the proposed method. We obtain better performance with the proposed model for kernel selection and extrapolation in comparison to the baseline model using only observed data.en
dc.format.extent57
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/38960
dc.identifier.urnURN:NBN:fi:aalto-201906234026
dc.language.isoenen
dc.programmeMaster’s Programme in Computer, Communication and Information Sciencesfi
dc.programme.majorMachine Learning, Data Science and Artificial Intelligencefi
dc.programme.mcodeSCI3044fi
dc.subject.keywordexpert knowledge elicitationen
dc.subject.keywordGaussian processen
dc.subject.keyworddrawingen
dc.subject.keywordkernel selectionen
dc.titleElicitation of Non-Linearity from Expert Drawingen
dc.typeG2 Pro gradu, diplomityöfi
dc.type.ontasotMaster's thesisen
dc.type.ontasotDiplomityöfi
local.aalto.electroniconlyyes
local.aalto.openaccessyes
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
master_Chauhan_Rohan_2019.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format