Lateral and longitudinal control of electric bus to follow leader vehicle trajectory
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Insinööritieteiden korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2017-08-28
Department
Major/Subject
Koneensuunnittelu
Mcode
K3001
Degree programme
Konetekniikan koulutusohjelma
Language
en
Pages
75
Series
Abstract
Buses face problems when the capacity of a bus is limited but it should be larger to be able to carry more passengers. The capacity of a bus is already increased to its maximum that is allowed by the infrastructure. The capacity of a bus line could be increased by driving buses more frequently but it would increase costs, that is unwanted. Costs could be reduced by driving buses as platoons consisting of two buses where only the first bus would be operated by a professional driver and the second would be driven autonomously. Autonomous driving requires longitudinal and lateral control of a vehicle. The follower bus should be able to follow the path driven by the leader bus precisely and avoid inter-vehicular collisions while still driving as close together as possible to indicate other traffic that they move as a platoon. Lateral control is usually divided into path following and direct following methods in the literature. Path following methods include obtaining the path of the leader vehicle and following of that path. Path following methods are usually accurate in terms of lateral error but are complex and require a lot of computational capacity. Direct following methods are easy to compute but they do not guarantee precise path following. A simulation model consisting of two identical buses was developed. One longitudinal controller and four lateral control laws were proposed. Longitudinal controller was designed to work also in tight turns which is not usually investigated. Lateral control laws proposed were geometrical in nature and required only input as the relative position of the leader bus. Therefore, they did not require inter-vehicular communication. Longitudinal controller worked well for initialization of the system with inter-vehicular distances from 2 to 10 m. It worked well in acceleration and deceleration tests when both buses were loaded similarly but failed to prevent collisions when follower bus was loaded more heavily than the leader. In lateral controller tests, Pure Pursuit and Modified Pure Pursuit methods were able to follow the leader producing following lateral errors: 0,8 m and 1,1 m (steady-state tests), 0,8 m and 0,7 m (u-turn maneuver) and 0,3 m/0,4 m and 0,4 m/0,5 m (double lane change maneuver, 5 m/s/10 m/s respectively). Spline Pursuit method showed oscillatory behavior and did not follow the leader well. Circular Pursuit method showed also oscillatory behavior and did not follow the leader well. However, it showed better performance than the Spline Pursuit. It remains to be studied whether Pure Pursuit or Modified Pure Pursuit can challenge more sophisticated path following methods.Linja-autojen matkustajakapasiteetti on rajallinen, mikä aiheuttaa ongelmia, sillä sen tulisi olla suurempi. Kapasiteetti on jo nostettu suurimmalle mahdolliselle tasolle, mitä nykyinen infrastruktuuri mahdollistaa. Linja-autolinjan kapasiteettia voisi nostaa ajamalla linja-autoja tiheämmin. Tämä kuitenkin johtaa suurempiin kustannuksiin. Kustannuksia voisi vähentää ajamalla linja-autoja kahden ajoneuvon jonoina, joissa ensimmäistä ajo-neuvoa ohjaisi ammattilaiskuljettaja ja toinen olisi autonomisesti ohjattu. Autonominen ajaminen vaatii ajoneuvon nopeuden ja ohjauskulman säätöä. Seuraajalinja-auton pitää pystyä seuraamaan johtajalinja-auton ajamaa ajouraa tarkasti ja välttää törmäämistä johtajaan. Linja-autojen välinen etäisyys on kuitenkin oltava riittävän pieni, jotta se viestisi muulle liikenteelle, että ajoneuvot ajavat jonona. Kirjallisuus jakaa ohjauskulman säädön yleensä ajouran seuraamiseen ja suoraan seuraamiseen. Ajouran seuraaminen koostuu johtaja-ajoneuvon ajouran saamisesta ja tämän uran seuraamisesta. Ajouran seuraamisen metodit ovat yleensä tarkkoja poikittaisen virheen suhteen, mutta ovat monimutkaisia ja vaativat paljon laskennallista kapasiteettia. Suoran seuraamisen metodit ovat laskennallisesti kevyitä, mutta eivät takaa tarkkaa ajouran seuraamista. Kahdesta identtisestä linja-autosta koostuva simulaatiomalli kehitettiin. Yksi nopeussäädin ja neljä ohjauskulman säätölakia esitettiin. Nopeussäädin suunniteltiin toimimaan myös tiukoissa käännöksissä, mitä ei ole yleensä tutkittu. Ohjauskulman säätölait perustuivat geometriseen päättelyyn ja ne tarvitsivat vain johtajalinja-auton suhteellisen asentotiedon. Säätölait eivät vaatineet ajoneuvojen välistä kommunikaatiota. Nopeussäädin toimi järjestelmän alustamisessa ajoneuvojen välisen etäisyyden ollessa 2-10 m. Se toimi hyvin kiihdytys- ja jarrutustesteissä, kun molemmat linja-autot olivat lastattu identtisellä kuormalla, mutta epäonnistui estämään törmäämisen, kun seuraajalinja-auto oli lastattu suuremmalla kuormalla kuin johtaja. Ohjauskulman säädön testeissä Pure Pursuit ja Modified Pure Pursuit pystyivät seuraamaan johtajaa seuraavilla poikittaissuuntaisilla virheillä: 0,8 m ja 1,1 m (steady-state-testit), 0,8 m ja 0,7 m (u-käännös) ja 0,3 m/0,4 m ja 0,4 m/0,5 m (kaksoiskaistanvaihto, 5 m/s/10 m/s vastaavasti). Spline Pursuit käyttäytyi värähtelevästi eikä seurannut johtajaa hyvin. Circular Pursuit käyttäytyi värähtelevästi eikä seurannut johtajaa hyvin, mutta kuitenkin paremmin kuin Spline Pursuit. Jää nähtäväksi pystyykö Pure Pursuit tai Modified Pure Pursuit haastamaan monimutkaisempia ajouran seuraamisen metodeja.Description
Supervisor
Tammi, KariThesis advisor
Ruotsalainen, SamiKeywords
autonomous driving, direct following, path following, intelligent transportation system