Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 – Manufacturing and properties of precursor fibres

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2021-01-15
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Carbohydrate Polymers, Volume 252
Abstract
Cellulose-lignin composite fibres were spun from ionic liquid (IL) solutions by dry-jet wet spinning. Birch pre-hydrolysed Kraft (PHK) pulp and organosolv beech (BL) or spruce lignin (SL) were dissolved in the IL 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to prepare spinning dopes. Fibres with lignin concentrations of up to 50 % were spun successfully. The fibres were analysed focusing on important properties for the production of carbon fibres (CF). Due to the higher molar mass of the SL compared to the BL, SL showed higher stability in the spinning process, giving higher lignin content in the final fibres. The CF yield after carbonization increased with increasing lignin content. The higher carbon content of SL compared to BL, resulted in moderately higher CF yield of the SL fibres, compared to fibres with BL. Overall, the produced cellulose-lignin composite fibres show great potential as precursors for CF production.
Description
| openaire: EC/H2020/715788/EU//WoCaFi
Keywords
Carbon fibres, Fibres, Ionic liquid, Precursor, Spinning
Other note
Citation
Trogen, M, Le, N D, Sawada, D, Guizani, C, Lourençon, T V, Pitkänen, L, Sixta, H, Shah, R, O'Neill, H, Balakshin, M, Byrne, N & Hummel, M 2021, ' Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 – Manufacturing and properties of precursor fibres ', Carbohydrate Polymers, vol. 252, 117133 . https://doi.org/10.1016/j.carbpol.2020.117133