Automating Generative Deep Learning for Artistic Purposes: Challenges and Opportunities

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBerns, Sebastianen_US
dc.contributor.authorBroad, Terenceen_US
dc.contributor.authorGuckelsberger, Christianen_US
dc.contributor.authorColton, Simonen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Hämäläinen Perttuen
dc.contributor.organizationQueen Mary University of Londonen_US
dc.contributor.organizationGoldsmiths, University of Londonen_US
dc.date.accessioned2022-06-08T06:13:56Z
dc.date.available2022-06-08T06:13:56Z
dc.date.issued2021-09-01en_US
dc.description.abstractWe present a framework for automating generative deep learning with a specific focus on artistic applications. The framework provides opportunities to hand over creative responsibilities to a generative system as targets for automation. For the definition of targets, we adopt core concepts from automated machine learning and an analysis of generative deep learning pipelines, both in standard and artistic settings. To motivate the framework, we argue that automation aligns well with the goal of increasing the creative responsibility of a generative system, a central theme in computational creativity research. We understand automation as the challenge of granting a generative system more creative autonomy, by framing the interaction between the user and the system as a co-creative process. The development of the framework is informed by our analysis of the relationship between automation and creative autonomy. An illustrative example shows how the framework can give inspiration and guidance in the process of handing over creative responsibility.en
dc.description.versionPeer revieweden
dc.format.extent357-366
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBerns, S, Broad, T, Guckelsberger, C & Colton, S 2021, Automating Generative Deep Learning for Artistic Purposes: Challenges and Opportunities . in Proceedings of the 12th International Conference on Computational Creativity (ICCC 2021) . Association for Computational Creativity, pp. 357-366, International Conference on Computational Creativity, Mexico City, Mexico, 14/09/2021 .en
dc.identifier.isbn978-989-54160-3-5
dc.identifier.otherPURE UUID: da600b2c-404c-4c44-a884-5767836450cden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/da600b2c-404c-4c44-a884-5767836450cden_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/75821278/ICCC_2021_paper_37.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/114805
dc.identifier.urnURN:NBN:fi:aalto-202206083648
dc.language.isoenen
dc.relation.ispartofInternational Conference on Computational Creativityen
dc.relation.ispartofseriesProceedings of the International Conference on Computational Creativity (ICCC)en
dc.rightsopenAccessen
dc.titleAutomating Generative Deep Learning for Artistic Purposes: Challenges and Opportunitiesen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files