Hydrogen production processes from biomass
Loading...
URL
Journal Title
Journal ISSN
Volume Title
Kemian tekniikan korkeakoulu |
Master's thesis
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Authors
Date
2015-01-27
Department
Major/Subject
Process Systems Engineering
Mcode
KE3004
Degree programme
Master's Programme in Chemical Technology
Language
en
Pages
98 + 7
Series
Abstract
Global warming, climate change and energy security have been gaining more attention worldwide. Hydrogen production from biomass offers an effective solution leaving minimal environmental footprint. This thesis identifies and reviews the most potential bio-hydrogen production pathways, identifies and designs the most promising process, and then conducts a rough feasibility study to check its economic potential for commercial production after simulation (experimental part). Finally, it also tests the viability of the developed process against non-bio-hydrogen process. Based on literature review, it is concluded that biomass gasification technology is the most promising process for bio-hydrogen production. Simulation results show that 67.5% product efficiency with 99.99% purity and >82% overall efficiency are achieved using forest residues as the biomass feedstock in a plant capacity of 100 MW. The product efficiency of this process might be lower than the product efficiency achieved by hydrogen production from natural gas, which is >80%, but the designed process has low carbon footprint and has higher efficiency compared to other biological and thermochemical processes. The results from cost analysis show that the production cost of hydrogen based only on its hydrogen production efficiency for the base case accounts to 93 €/MWh. For the same base case, the calculated internal rate of return (IRR) is 7.46%. Sensitivity analysis shows that in order for IRR to increase from ~7.5% to 15%, either the hydrogen selling price should increase from 90 €/MWh to 125 €/MWh while keeping the rest of variables constant. Alternatively, the fixed capital investment (FCI) should decrease from 200M€ to 150M€ and the hydrogen selling price should increase from 90 €/MWh to 99 €/MWh. To conclude, this study shows that biomass gasification technology is the most promising bio-hydrogen production process and hence should be considered for commercial production.Description
Supervisor
Koskinen, JukkaThesis advisor
Sonck, MattiKärki, Sara
Keywords
hydrogen, production, literature review, thermochemical, biological, efficiency