Learning discrete decomposable graphical models via constraint optimization

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJanhunen, Tomien_US
dc.contributor.authorGebser, Martinen_US
dc.contributor.authorRintanen, Jussien_US
dc.contributor.authorNyman, Henriken_US
dc.contributor.authorPensar, Johanen_US
dc.contributor.authorCorander, Jukkaen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.organizationÅbo Akademi Universityen_US
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2018-12-10T10:36:03Z
dc.date.available2018-12-10T10:36:03Z
dc.date.issued2017en_US
dc.description.abstractStatistical model learning problems are traditionally solved using either heuristic greedy optimization or stochastic simulation, such as Markov chain Monte Carlo or simulated annealing. Recently, there has been an increasing interest in the use of combinatorial search methods, including those based on computational logic. Some of these methods are particularly attractive since they can also be successful in proving the global optimality of solutions, in contrast to stochastic algorithms that only guarantee optimality at the limit. Here we improve and generalize a recently introduced constraint-based method for learning undirected graphical models. The new method combines perfect elimination orderings with various strategies for solution pruning and offers a dramatic improvement both in terms of time and memory complexity. We also show that the method is capable of efficiently handling a more general class of models, called stratified/labeled graphical models, which have an astronomically larger model space.en
dc.description.versionPeer revieweden
dc.format.extent115-130
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJanhunen, T, Gebser, M, Rintanen, J, Nyman, H, Pensar, J & Corander, J 2017, ' Learning discrete decomposable graphical models via constraint optimization ', STATISTICS AND COMPUTING, vol. 27, no. 1, pp. 115-130 . https://doi.org/10.1007/s11222-015-9611-4en
dc.identifier.doi10.1007/s11222-015-9611-4en_US
dc.identifier.issn0960-3174
dc.identifier.otherPURE UUID: f87501a0-948c-4586-998f-1ebcaf5567bcen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f87501a0-948c-4586-998f-1ebcaf5567bcen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=84946763426&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/30223840/SCI_Janhunen_et_al_Learning_Discrete_STATCOMP17.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/35366
dc.identifier.urnURN:NBN:fi:aalto-201812106381
dc.language.isoenen
dc.relation.ispartofseriesSTATISTICS AND COMPUTINGen
dc.relation.ispartofseriesVolume 27, issue 1en
dc.rightsopenAccessen
dc.subject.keywordAnswer set programmingen_US
dc.subject.keywordConstraint programmingen_US
dc.subject.keywordGraphical modelsen_US
dc.subject.keywordMAXSATen_US
dc.subject.keywordSatisfiabilityen_US
dc.subject.keywordStructure learningen_US
dc.titleLearning discrete decomposable graphical models via constraint optimizationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files