Integrating neurophysiologic relevance feedback in intent modeling for information retrieval

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJacucci, Giulioen_US
dc.contributor.authorBarral, Oswalden_US
dc.contributor.authorDaee, Pedramen_US
dc.contributor.authorWenzel, Markusen_US
dc.contributor.authorSerim, Barisen_US
dc.contributor.authorRuotsalo, Tuukkaen_US
dc.contributor.authorPluchino, Patriken_US
dc.contributor.authorFreeman, Jonathanen_US
dc.contributor.authorGamberini, Lucianoen_US
dc.contributor.authorKaski, Samuelen_US
dc.contributor.authorBlankertz, Benjaminen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorFinnish Center for Artificial Intelligence, FCAIen
dc.contributor.groupauthorCentre of Excellence in Computational Inference, COINen
dc.contributor.organizationUniversity of Helsinkien_US
dc.contributor.organizationTechnische Universität Berlinen_US
dc.contributor.organizationUniversity of Padovaen_US
dc.contributor.organizationGoldsmiths, University of Londonen_US
dc.date.accessioned2019-04-02T06:51:38Z
dc.date.available2019-04-02T06:51:38Z
dc.date.issued2019-03-12en_US
dc.description| openaire: EC/H2020/611570/EU//MindSee
dc.description.abstractThe use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first-of-its-kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology-based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJacucci, G, Barral, O, Daee, P, Wenzel, M, Serim, B, Ruotsalo, T, Pluchino, P, Freeman, J, Gamberini, L, Kaski, S & Blankertz, B 2019, ' Integrating neurophysiologic relevance feedback in intent modeling for information retrieval ', JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY . https://doi.org/10.1002/asi.24161en
dc.identifier.doi10.1002/asi.24161en_US
dc.identifier.issn2330-1635
dc.identifier.issn2330-1643
dc.identifier.otherPURE UUID: 023a633d-d3ab-4e1f-a914-32210a919782en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/023a633d-d3ab-4e1f-a914-32210a919782en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85062988463&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/32810535/Jacucci_et_al_2019_Journal_of_the_Association_for_Information_Science_and_Technology.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/37256
dc.identifier.urnURN:NBN:fi:aalto-201904022387
dc.language.isoenen
dc.publisherJohn Wiley and Sons Ltd
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/611570/EU//MindSeeen_US
dc.relation.ispartofseriesJOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGYen
dc.rightsopenAccessen
dc.subject.keywordinformation retrievalen_US
dc.subject.keywordbrain-computer interfacesen_US
dc.subject.keywordneuro-physiologyen_US
dc.subject.keywordinteractive intent modelingen_US
dc.subject.keywordrelevance feedbacken_US
dc.titleIntegrating neurophysiologic relevance feedback in intent modeling for information retrievalen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files