Train Localization Environmental Scenario Identification Using Features Extracted from Historical Data

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhang, Taoen_US
dc.contributor.authorCai, Baigenen_US
dc.contributor.authorLu, Debiaoen_US
dc.contributor.authorWang, Jianen_US
dc.contributor.authorXiao, Yuen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.editorYang, Changfengen_US
dc.contributor.editorXie, Junen_US
dc.contributor.groupauthorMobile Cloud Computingen
dc.contributor.organizationBeijing Jiaotong Universityen_US
dc.date.accessioned2022-01-10T08:15:24Z
dc.date.available2022-01-10T08:15:24Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2022-06-11en_US
dc.date.issued2021en_US
dc.descriptionFunding Information: This paper is supported by National Key Research and Development Program of China (2018YFB1201500), Beijing Science Program of Beijing Municipal Science and Technology (Z181100001018032), National Natural Science Foundation of China (U1934222, 61873023), Beijing Natural Science Foundation (L191014), and Beijing Nova Program of Science and Technology (Z191100001119066). Publisher Copyright: © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
dc.description.abstractThe application of Global Navigation Satellite System (GNSS) on the railway greatly reduces the cost on train localization. However, the railway environment is complex and changes with the train movement, buildings, trees, railroad cuts and mountains will block and reflect the GNSS signals, which will bring errors to the GNSS-based train position estimation. This paper proposes a railway scenario identification method based on historical GNSS receiver observation data to identify scenarios along the railway. Firstly, a railway environment scenario parameter model library is established according to Feature of Sky Occlusion (FSO) of typical scenarios, apply historical GNSS observation data along the railway to establish the FSO models of scenario segments, and generate FSO feature sequences. The dynamic time warping algorithm (DTW) is used to match the FSO parameter model of the scenario segment with the FSO model library. This paper collected data from field experiments at Beijing Sanjiadian station to verify the algorithm. The scenario identification results showed that the scenario identification method based on DTW can effectively identify the railway scenarios.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.extent12-21
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZhang, T, Cai, B, Lu, D, Wang, J & Xiao, Y 2021, Train Localization Environmental Scenario Identification Using Features Extracted from Historical Data . in C Yang & J Xie (eds), China Satellite Navigation Conference, CSNC 2021, Proceedings . Lecture Notes in Electrical Engineering, vol. 772 LNEE, Springer, pp. 12-21, China Satellite Navigation Conference, Nanchang, China, 22/05/2021 . https://doi.org/10.1007/978-981-16-3138-2_2en
dc.identifier.doi10.1007/978-981-16-3138-2_2en_US
dc.identifier.isbn9789811631375
dc.identifier.issn1876-1100
dc.identifier.issn1876-1119
dc.identifier.otherPURE UUID: 21b377c3-70e1-4eae-b54b-dc962717fe3cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/21b377c3-70e1-4eae-b54b-dc962717fe3cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85111422836&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/77719661/ELEC_Zhang_etal_Train_Localization_Environmental_Scenario_CSNC_2021.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/112143
dc.identifier.urnURN:NBN:fi:aalto-202201101055
dc.language.isoenen
dc.relation.ispartofChina Satellite Navigation Conferenceen
dc.relation.ispartofseriesChina Satellite Navigation Conference, CSNC 2021, Proceedingsen
dc.relation.ispartofseriesLecture Notes in Electrical Engineeringen
dc.relation.ispartofseriesVolume 772 LNEEen
dc.rightsopenAccessen
dc.subject.keywordDynamic time warping algorithmen_US
dc.subject.keywordFeature of sky occlusionen_US
dc.subject.keywordGNSSen_US
dc.subject.keywordScenarios identificationen_US
dc.subject.keywordTrain localizationen_US
dc.titleTrain Localization Environmental Scenario Identification Using Features Extracted from Historical Dataen
dc.typeA4 Artikkeli konferenssijulkaisussafi

Files