SynToxProfiler
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-02-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
PLoS computational biology, Volume 16, issue 2
Abstract
Drug combinations are becoming a standard treatment of many complex diseases due to their capability to overcome resistance to monotherapy. In the current preclinical drug combination screening, the top combinations for further study are often selected based on synergy alone, without considering the combination efficacy and toxicity effects, even though these are critical determinants for the clinical success of a therapy. To promote the prioritization of drug combinations based on integrated analysis of synergy, efficacy and toxicity profiles, we implemented a web-based open-source tool, SynToxProfiler (Synergy-Toxicity-Profiler). When applied to 20 anti-cancer drug combinations tested both in healthy control and T-cell prolymphocytic leukemia (T-PLL) patient cells, as well as to 77 anti-viral drug pairs tested in Huh7 liver cell line with and without Ebola virus infection, SynToxProfiler prioritized as top hits those synergistic drug pairs that showed higher selective efficacy (difference between efficacy and toxicity), which offers an improved likelihood for clinical success.Description
Keywords
Other note
Citation
Ianevski , A , Timonen , S , Kononov , A , Aittokallio , T & Giri , A K 2020 , ' SynToxProfiler : An interactive analysis of drug combination synergy, toxicity and efficacy ' , PLoS computational biology , vol. 16 , no. 2 , e1007604 . https://doi.org/10.1371/journal.pcbi.1007604