Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Bayesian Analysis, pp. 1-28
Abstract
Simulation-based calibration checking (SBC) is a practical method to validate computationally-derived posterior distributions or their approximations. In this paper, we introduce a new variant of SBC to alleviate several known problems. Our variant allows the user to in principle detect any possible issue with the posterior, while previously reported implementations could never detect large classes of problems including when the posterior is equal to the prior. This is made possible by including additional data-dependent test quantities when running SBC. We argue and demonstrate that the joint likelihood of the data is an especially useful test quantity. Some other types of test quantities and their theoretical and practical benefits are also investigated. We provide theoretical analysis of SBC, thereby providing a more complete understanding of the underlying statistical mechanisms. We also bring attention to a relatively common mistake in the literature and clarify the difference between SBC and checks based on the data-averaged posterior. We support our recommendations with numerical case studies on a multivariate normal example and a case study in implementing an ordered simplex data type for use with Hamiltonian Monte Carlo. The SBC variant introduced in this paper is implemented in the SBC R package.Description
Keywords
Other note
Citation
Modrak, M, Moon, A H, Shinyoung, K, Burkner, P-C, Huurre, N, Faltejsková, K, Gelman, A & Vehtari, A 2023, 'Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity', Bayesian Analysis, pp. 1-28. https://doi.org/10.1214/23-BA1404