Obtaining localization properties efficiently using the Kubo-Greenwood formalism

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2014
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
PHYSICAL REVIEW B, Volume 89, issue 7
Abstract
We establish, through numerical calculations and comparisons with a recursive Green's-function based implementation of the Landauer-Büttiker formalism, an efficient method for studying Anderson localization in quasi-one-dimensional and two-dimensional systems using the Kubo-Greenwood formalism. Although the recursive Green's-function method can be used to obtain the localization length of a mesoscopic conductor, it is numerically very expensive for systems that contain a large number of atoms transverse to the transport direction. On the other hand, linear scaling has been achieved with the Kubo-Greenwood method, enabling the study of effectively two-dimensional systems. While the propagating length of the charge carriers will eventually saturate to a finite value in the localized regime, the conductances given by the Kubo-Greenwood method and the recursive Green's-function method agree before the saturation. The converged value of the propagating length is found to be directly proportional to the localization length obtained from the exponential decay of the conductance.
Description
Keywords
graphene, Kubo-Greenwood, localization
Citation
Uppstu , A , Fan , Z & Harju , A 2014 , ' Obtaining localization properties efficiently using the Kubo-Greenwood formalism ' , Physical Review B , vol. 89 , no. 7 . https://doi.org/10.1103/PhysRevB.89.075420