Personalized Gestures Through Motion Transfer: Protecting Privacy in Pervasive Surveillance

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZuo, Sien_US
dc.contributor.authorSigg, Stephanen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorAmbient Intelligenceen
dc.date.accessioned2023-01-18T09:19:25Z
dc.date.available2023-01-18T09:19:25Z
dc.date.issued2022en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractWith the growing ubiquitousness of pervasive sensing and toward ambient intelligence, pervasive surveillance becomes a very real privacy threat, where private gesture interaction is likely to be observed and automatically interpreted by other (even benign) pervasive intelligence tools. We propose motion transfer, the example-guided modification of motion to translate from default motion and gesture interaction alphabets to personal ones. Apart from privacy, incentive to use personalized gesture interaction alphabets include convenience as well as physical handicaps (i.e., inability to conduct certain movements). We demonstrate the concept using motion transfer in RGB-video data. We further show that the approach is feasible also for point-cloud-based gesture recognition methods. In particular, we implemented an end-to-end model for human motion transfer with 3D (<italic>x</italic>-<italic>y</italic>-time) or 4D (<italic>x</italic>-<italic>y</italic>-<italic>z</italic>-time) point-cloud datasets. Point-cloud-based motion transfer is a privacy protecting way of customizing gestures to control devices, hence lowering the risk of disclosing the nature of interaction to surrounding pervasive surveillance installations.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZuo, S & Sigg, S 2022, 'Personalized Gestures Through Motion Transfer : Protecting Privacy in Pervasive Surveillance', IEEE Pervasive Computing, vol. 21, no. 4, pp. 8-16. https://doi.org/10.1109/MPRV.2022.3210156en
dc.identifier.doi10.1109/MPRV.2022.3210156en_US
dc.identifier.issn1536-1268
dc.identifier.issn1558-2590
dc.identifier.otherPURE UUID: 0aaa5776-82d0-44e5-8113-f76d07bace35en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0aaa5776-82d0-44e5-8113-f76d07bace35en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/96631120/MotionTransfer_Final.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118791
dc.identifier.urnURN:NBN:fi:aalto-202301181147
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Pervasive Computingen
dc.relation.ispartofseriesVolume 21, issue 4, pp. 8-16en
dc.rightsopenAccessen
dc.subject.keywordDecodingen_US
dc.subject.keywordDronesen_US
dc.subject.keywordPrivacyen_US
dc.subject.keywordSensorsen_US
dc.subject.keywordShapeen_US
dc.subject.keywordThree-dimensional displaysen_US
dc.subject.keywordTrainingen_US
dc.titlePersonalized Gestures Through Motion Transfer: Protecting Privacy in Pervasive Surveillanceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files