Phase-field crystal model for heterostructures

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHirvonen, Petrien_US
dc.contributor.authorHeinonen, Vilien_US
dc.contributor.authorDong, Haikuanen_US
dc.contributor.authorFan, Zheyongen_US
dc.contributor.authorElder, Ken R.en_US
dc.contributor.authorAla-Nissila, Tapioen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.date.accessioned2019-11-15T08:12:42Z
dc.date.available2019-11-15T08:12:42Z
dc.date.issued2019-10-16en_US
dc.description.abstractAtomically thin two-dimensional heterostructures are a promising, novel class of materials with ground-breaking properties. The possibility of choosing many constituent components and their proportions allows optimization of these materials to specific requirements. The wide adaptability comes with a cost of large parameter space making it hard to experimentally test all the possibilities. Instead, efficient computational modeling is needed. However, large range of relevant time and length scales related to physics of polycrystalline materials poses a challenge for computational studies. To this end, we present an efficient and flexible phase-field crystal model to describe the atomic configurations of multiple atomic species and phases coexisting in the same physical domain. We extensively benchmark the model for two-dimensional binary systems in terms of their elastic properties and phase boundary configurations and their energetics. As a concrete example, we demonstrate modeling lateral heterostructures of graphene and hexagonal boron nitride. We consider both idealized bicrystals and large-scale systems with random phase distributions. We find consistent relative elastic moduli and lattice constants, as well as realistic continuous interfaces and faceted crystal shapes. Zigzag-oriented interfaces are observed to display the lowest formation energy.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHirvonen, P, Heinonen, V, Dong, H, Fan, Z, Elder, K R & Ala-Nissila, T 2019, ' Phase-field crystal model for heterostructures ', Physical Review B, vol. 100, no. 16, 165412, pp. 1-15 . https://doi.org/10.1103/PhysRevB.100.165412en
dc.identifier.doi10.1103/PhysRevB.100.165412en_US
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherPURE UUID: ce63ab3d-b4b3-4512-b256-c59919039e30en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ce63ab3d-b4b3-4512-b256-c59919039e30en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/38604182/Hirvonen_Phase_field_Crystal_PhysRevB.100.165412_1.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/41273
dc.identifier.urnURN:NBN:fi:aalto-201911156278
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 100, issue 16, pp. 1-15en
dc.rightsopenAccessen
dc.subject.keywordHEXAGONAL BORON-NITRIDEen_US
dc.subject.keywordINPLANE HETEROSTRUCTURESen_US
dc.subject.keywordGRAPHENEen_US
dc.subject.keywordINTERFACEen_US
dc.subject.keywordTRANSPORTen_US
dc.subject.keywordDYNAMICSen_US
dc.subject.keywordGROWTHen_US
dc.subject.keywordENERGYen_US
dc.titlePhase-field crystal model for heterostructuresen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files