Alternating minimisation for glottal inverse filtering

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBleyer, Ismael Rodrigoen_US
dc.contributor.authorLybeck, Lasseen_US
dc.contributor.authorAuvinen, Harrien_US
dc.contributor.authorAiraksinen, Manuen_US
dc.contributor.authorAlku, Paavoen_US
dc.contributor.authorSiltanen, Samulien_US
dc.contributor.departmentDepartment of Signal Processing and Acousticsen
dc.contributor.groupauthorSpeech Communication Technologyen
dc.contributor.organizationUniversity of Helsinkien_US
dc.date.accessioned2018-06-18T09:20:31Z
dc.date.available2018-06-18T09:20:31Z
dc.date.issued2017-05-17en_US
dc.description.abstractA new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency (F0). The results show the competitive performance of the new method: With high F0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude.en
dc.description.versionPeer revieweden
dc.format.extent19
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBleyer, I R, Lybeck, L, Auvinen, H, Airaksinen, M, Alku, P & Siltanen, S 2017, ' Alternating minimisation for glottal inverse filtering ', Inverse Problems, vol. 33, no. 6, 065005 . https://doi.org/10.1088/1361-6420/aa6eb8en
dc.identifier.doi10.1088/1361-6420/aa6eb8en_US
dc.identifier.issn0266-5611
dc.identifier.issn1361-6420
dc.identifier.otherPURE UUID: 9d1c7eb6-da91-4624-b3d8-14cf2607eb3aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9d1c7eb6-da91-4624-b3d8-14cf2607eb3aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85020039048&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/21546890/Bleyer_Alternating_minimisation_2017_Inverse_Problems_33_065005.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/31932
dc.identifier.urnURN:NBN:fi:aalto-201806183350
dc.language.isoenen
dc.relation.ispartofseriesInverse Problemsen
dc.relation.ispartofseriesVolume 33, issue 6en
dc.rightsopenAccessen
dc.subject.keywordalternating minimizationen_US
dc.subject.keyworddeterministicen_US
dc.subject.keyworddouble regularizationen_US
dc.subject.keywordglottal airflowen_US
dc.subject.keywordglottal inverse filteringen_US
dc.subject.keywordill-posed problemsen_US
dc.subject.keywordwaveletsen_US
dc.titleAlternating minimisation for glottal inverse filteringen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files