Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data
No Thumbnail Available
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2018
Major/Subject
Mcode
Degree programme
Language
en
Pages
10
19-28
19-28
Series
JOURNAL OF QUANTITATIVE SPECTROSCOPY AND RADIATIVE TRANSFER, Volume 208
Abstract
In this paper, Bayesian inversion of a physically-based forest reflectance model is investigated to estimate of boreal forest canopy leaf area index (LAI) from EO-1 Hyperion hyperspectral data. The data consist of multiple forest stands with different species compositions and structures, imaged in three phases of the growing season. The Bayesian estimates of canopy LAI are compared to reference estimates based on a spectral vegetation index. The forest reflectance model contains also other unknown variables in addition to LAI, for example leaf single scattering albedo and understory reflectance. In the Bayesian approach, these variables are estimated simultaneously with LAI. The feasibility and seasonal variation of these estimates is also examined. Credible intervals for the estimates are also calculated and evaluated. The results show that the Bayesian inversion approach is significantly better than using a comparable spectral vegetation index regression.Description
Keywords
Leaf area index, Spectral invariants, Reflectance model, Uncertainty quantification, Seasonal dynamics
Other note
Citation
Varvia, P, Rautiainen, M & Seppänen, A 2018, ' Bayesian estimation of seasonal course of canopy leaf area index from hyperspectral satellite data ', Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 208, pp. 19-28 . https://doi.org/10.1016/j.jqsrt.2018.01.008