Electronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium model

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorOgando, E.
dc.contributor.authorTorsti, T.
dc.contributor.authorZabala, N.
dc.contributor.authorPuska, Martti J.
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.date.accessioned2015-09-18T09:01:36Z
dc.date.available2015-09-18T09:01:36Z
dc.date.issued2003
dc.description.abstractWe investigate the elongation and breaking process of metallic nanowires using the ultimate jellium model in self-consistent density-functional calculations of the electronic structure. In this model the positive background charge deforms to follow the electron density and the energy minimization determines the shape of the system. However, we restrict the shape of the wires by assuming rotational invariance about the wire axis. First, we study the stability of infinite wires and show that the quantum-mechanical shell structure stabilizes the uniform cylindrical geometry at the given magic radii. Next, we focus on finite nanowires supported by leads modeled by freezing the shape of a uniform wire outside the constriction volume. We calculate the conductance during the elongation process using the adiabatic approximation and the WKB transmission formula. We also observe the correlated oscillations of the elongation force. In different stages of the elongation process two kinds of electronic structures appear: one with extended states throughout the wire and one with an atom-cluster-like unit in the constriction and with well-localized states. We discuss the origin of these structures.en
dc.description.versionPeer revieweden
dc.format.extent075417/1-11
dc.format.mimetypeapplication/pdfen
dc.identifier.citationOgando, E. & Torsti, T. & Zabala, N. & Puska, Martti J. 2003. Electronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium model. Physical Review B. Volume 67, Issue 7. 075417/1-11. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.67.075417.en
dc.identifier.doi10.1103/physrevb.67.075417
dc.identifier.issn1550-235X (electronic)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/17802
dc.identifier.urnURN:NBN:fi:aalto-201509174296
dc.language.isoenen
dc.publisherAmerican Physical Society (APS)en
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 67, Issue 7
dc.rights© 2003 American Physical Society (APS). This is the accepted version of the following article: Ogando, E. & Torsti, T. & Zabala, N. & Puska, Martti J. 2003. Electronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium model. Physical Review B. Volume 67, Issue 7. 075417/1-11. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.67.075417, which has been published in final form at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.67.075417.en
dc.rights.holderAmerican Physical Society (APS)
dc.subject.keywordultimate jelliumen
dc.subject.keyworddensity functional theoryen
dc.subject.keywordnanowiresen
dc.subject.keywordmultigrid methodsen
dc.subject.otherPhysicsen
dc.titleElectronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium modelen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.dcmitypetexten
dc.type.versionFinal published versionen

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A1_ogando_e_2003.pdf
Size:
327.14 KB
Format:
Adobe Portable Document Format