3D inkjet-printing of photo-crosslinkable resins for microlens fabrication
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A2 Katsausartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Additive Manufacturing, Volume 50
Abstract
The demand for optical components such as microlenses has been growing at a rapid rate in recent years. While conventional methods for manufacturing these components are well known, they are often time-consuming, detrimental for the environment and unable to keep up with the increasing demand. To overcome these issues, the technique of three-dimensional (3D) inkjet printing has attracted much attention. The aim of this review was to investigate the 3D inkjet printing process as a technique for the fabrication of microlenses and identify the key components and methodologies which can be used to control the properties of the resultant microlenses. 3D Inkjet printing was identified as a viable alternative for the production of microlenses owing to its high flexibility, scalability and efficiency as well as its ability to produce good quality products. Substrate modification was shown as a key method by which the geometric and optical properties of microlenses can be controlled. Organic materials such as acrylates and epoxies, and hybrid materials such as siloxanes were shown to be the most common base materials in photo-crosslinkable inkjet formulations and the effects of incorporation of organic compounds and inorganic nanoparticles on the material refractive index were studied.Description
Keywords
Other note
Citation
Magazine, R, van Bochove, B, Borandeh, S & Seppälä, J 2022, '3D inkjet-printing of photo-crosslinkable resins for microlens fabrication', Additive Manufacturing, vol. 50, 102534. https://doi.org/10.1016/j.addma.2021.102534