Breaking the black-body limit with resonant surfaces

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorValagiannopoulos, Constantinos A.en_US
dc.contributor.authorSimovski, Constantin R.en_US
dc.contributor.authorTretyakov, Sergei A.en_US
dc.contributor.departmentDepartment of Radio Science and Engineeringen
dc.contributor.departmentDepartment of Electronics and Nanoengineeringen
dc.contributor.groupauthorSergei Tretiakov Groupen
dc.contributor.groupauthorKostantin Simovski Groupen
dc.date.accessioned2017-10-13T10:32:33Z
dc.date.available2017-10-13T10:32:33Z
dc.date.issued2017en_US
dc.description.abstractThe speed with which electromagnetic energy can be wirelessly transferred from a source to the user is a crucial indicator for the performance of a large number of electronic and photonic devices. We expect that energy transfer can be enhanced using special materials. In this paper, we determine the constituent parameters of a medium which can support theoretically infinite energy concentration close to its boundary; such a material combines properties of Perfectly Matched Layers (PML) and Double-Negative (DNG) media. It realizes conjugate matching with free space for every possible mode including, most importantly, all evanescent modes; we call this medium Conjugate Matched Layer (CML). Sources located outside such layer deliver power to the conjugate-matched body exceptionally effectively, impressively overcoming the black-body absorption limit which takes into account only propagating waves. We also expand this near-field concept related to the infinitely fast absorption of energy along the air-medium interface to enhance the far-field radiation. This becomes possible with the use of small particles randomly placed along the boundary; the induced currents due to the extremely high-amplitude resonating fields can play the role of emission ‘‘vessels’’, by sending part of the theoretically unlimited near-field energy far away from the CML structure.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationValagiannopoulos, C A, Simovski, C R & Tretyakov, S A 2017, ' Breaking the black-body limit with resonant surfaces ', EPJ Applied Metamaterials, vol. 4, 5 . https://doi.org/10.1051/epjam/2017002en
dc.identifier.doi10.1051/epjam/2017002en_US
dc.identifier.issn2272-2394
dc.identifier.otherPURE UUID: 2ddd49ef-2cfd-4a3f-8bb2-8b236c06257fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/2ddd49ef-2cfd-4a3f-8bb2-8b236c06257fen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/14566028/epjam160013.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/28142
dc.identifier.urnURN:NBN:fi:aalto-201710137003
dc.language.isoenen
dc.relation.ispartofseriesEPJ Applied Metamaterialsen
dc.relation.ispartofseriesVolume 4en
dc.rightsopenAccessen
dc.rightsCC BYen_US
dc.rights.copyright© C.A. Valagiannopoulos et al., Published by EDP Sciences, 2017. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.subject.keywordBlack-body limiten_US
dc.subject.keywordConjugate matchingen_US
dc.subject.keywordPerfectly Matched Layer (PML)en_US
dc.subject.keywordWireless power transferen_US
dc.titleBreaking the black-body limit with resonant surfacesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files