Hybrid nanoassemblies from viruses and DNA nanostructures

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A2 Katsausartikkeli tieteellisessä aikakauslehdessä

Date

2021-05-27

Major/Subject

Mcode

Degree programme

Language

en

Pages

15

Series

Nanomaterials, Volume 11, issue 6

Abstract

Viruses are among the most intriguing nanostructures found in nature. Their atomically precise shapes and unique biological properties, especially in protecting and transferring genetic information, have enabled a plethora of biomedical applications. On the other hand, structural DNA nanotechnology has recently emerged as a highly useful tool to create programmable nanoscale structures. They can be extended to user defined devices to exhibit a wide range of static, as well as dynamic functions. In this review, we feature the recent development of virus-DNA hybrid materials. Such structures exhibit the best features of both worlds by combining the biological properties of viruses with the highly controlled assembly properties of DNA. We present how the DNA shapes can act as “structured” genomic material and direct the formation of virus capsid proteins or be encapsulated inside symmetrical capsids. Tobacco mosaic virus-DNA hybrids are discussed as the examples of dynamic systems and directed formation of conjugates. Finally, we highlight virus-mimicking approaches based on lipid-and protein-coated DNA structures that may elicit enhanced stability, immunocompatibility and delivery properties. This development also paves the way for DNA-based vaccines as the programmable nano-objects can be used for controlling immune cell activation.

Description

Funding Information: Funding: This research was funded by Emil Aaltonen Foundation, Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, Magnus Ehrnrooth Foundation, and Finnish Cultural Foundation (Kalle and Dagmar Välimaa Fund). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

Biomedicine, Capsid, DNA nanotechnology, DNA origami, Nanofabrication, Protein, Self-assembly, Vaccine, Virus

Other note

Citation

Ojasalo, S, Piskunen, P, Shen, B, Kostiainen, M A & Linko, V 2021, ' Hybrid nanoassemblies from viruses and DNA nanostructures ', Nanomaterials, vol. 11, no. 6, 1413 . https://doi.org/10.3390/nano11061413