Automatic detection and visualisation of MEG ripple oscillations in epilepsy
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2017
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
689-701
689-701
Series
NEUROIMAGE. CLINICAL, Volume 15
Abstract
High frequency oscillations (HFOs, 80–500 Hz) in invasive EEG are a biomarker for the epileptic focus. Ripples (80–250 Hz) have also been identified in non-invasive MEG, yet detection is impeded by noise, their low occurrence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through noise reduction, beamforming and automatic detection with minimal user effort. We analysed 15 min of presurgical resting-state interictal MEG data of 25 patients with epilepsy. The MEG signal-to-noise was improved by using a cross-validation signal space separation method, and by calculating ~ 2400 beamformer-based virtual sensors in the grey matter. Ripples in these sensors were automatically detected by an algorithm optimized for MEG. A small subset of the identified ripples was visually checked. Ripple locations were compared with MEG spike dipole locations and the resection area if available. Running the automatic detection algorithm resulted in on average 905 ripples per patient, of which on average 148 ripples were visually reviewed. Reviewing took approximately 5 min per patient, and identified ripples in 16 out of 25 patients. In 14 patients the ripple locations showed good or moderate concordance with the MEG spikes. For six out of eight patients who had surgery, the ripple locations showed concordance with the resection area: 4/5 with good outcome and 2/3 with poor outcome. Automatic ripple detection in beamformer-based virtual sensors is a feasible non-invasive tool for the identification of ripples in MEG. Our method requires minimal user effort and is easily applicable in a clinical setting.Description
Keywords
Automatic detection, Beamformer, Epilepsy, High frequency oscillations, Magnetoencephalography, Virtual sensors
Other note
Citation
van Klink, N, van Rosmalen, F, Nenonen, J, Burnos, S, Helle, L, Taulu, S, Furlong, P L, Zijlmans, M & Hillebrand, A 2017, ' Automatic detection and visualisation of MEG ripple oscillations in epilepsy ', NEUROIMAGE. CLINICAL, vol. 15, pp. 689-701 . https://doi.org/10.1016/j.nicl.2017.06.024