Coexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André model
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Antão, T. V. C. | en_US |
dc.contributor.author | Miranda, D. A. | en_US |
dc.contributor.author | Peres, N. M.R. | en_US |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | Correlated Quantum Materials (CQM) | en |
dc.contributor.organization | Correlated Quantum Materials (CQM) | en_US |
dc.contributor.organization | University of Minho | en_US |
dc.date.accessioned | 2024-06-20T08:20:00Z | |
dc.date.available | 2024-06-20T08:20:00Z | |
dc.date.issued | 2024-05-15 | en_US |
dc.description | Publisher Copyright: © 2024 American Physical Society. | |
dc.description.abstract | We construct a one-dimensional (1D) topological SSH-like model with chiral symmetry and a superimposed hopping modulation, which we call the chiral Aubry-André model. We show that its topological properties can be described in terms of a pair (C,W) of a two-dimensional (2D) Chern number C, stemming from a superspace description of the model, and a 1D winding number W, originating in its chiral symmetric nature. Thus, we showcase the explicit coexistence of 1D and 2D topology in a model composed of a single 1D chain. We detail the superspace description by showcasing how our model can be mapped to a Harper-Hofstadter model, familiar from the description of the integer quantum Hall effect, and analyze the vanishing field limit analytically. An extension of the method used for vanishing fields is provided in order to handle any finite fields, corresponding to hopping modulations both commensurate and incommensurate with the lattice. In addition, this formalism allows us to obtain certain features of the 2D superspace model, such as its number of massless Dirac nodes, purely in terms of topological quantities, computed without the need to go into momentum space. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 15 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Antão, T V C, Miranda, D A & Peres, N M R 2024, ' Coexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André model ', Physical Review B, vol. 109, no. 19, 195436, pp. 1-15 . https://doi.org/10.1103/PhysRevB.109.195436 | en |
dc.identifier.doi | 10.1103/PhysRevB.109.195436 | en_US |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issn | 2469-9969 | |
dc.identifier.other | PURE UUID: cd0c37f9-b67f-4b40-8bce-73c12e6b08e1 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/cd0c37f9-b67f-4b40-8bce-73c12e6b08e1 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85195052960&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/148528554/Coexistence_of_one-dimensional_and_two-dimensional_topology_and_genesis_of_Dirac_cones_in_the_chiral_Aubry-Andr_model.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/129042 | |
dc.identifier.urn | URN:NBN:fi:aalto-202406204628 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review B | |
dc.relation.ispartofseries | Volume 109, issue 19, pp. 1-15 | |
dc.rights | openAccess | en |
dc.title | Coexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André model | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |