Coexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André model

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAntão, T. V. C.en_US
dc.contributor.authorMiranda, D. A.en_US
dc.contributor.authorPeres, N. M.R.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorCorrelated Quantum Materials (CQM)en
dc.contributor.organizationCorrelated Quantum Materials (CQM)en_US
dc.contributor.organizationUniversity of Minhoen_US
dc.date.accessioned2024-06-20T08:20:00Z
dc.date.available2024-06-20T08:20:00Z
dc.date.issued2024-05-15en_US
dc.descriptionPublisher Copyright: © 2024 American Physical Society.
dc.description.abstractWe construct a one-dimensional (1D) topological SSH-like model with chiral symmetry and a superimposed hopping modulation, which we call the chiral Aubry-André model. We show that its topological properties can be described in terms of a pair (C,W) of a two-dimensional (2D) Chern number C, stemming from a superspace description of the model, and a 1D winding number W, originating in its chiral symmetric nature. Thus, we showcase the explicit coexistence of 1D and 2D topology in a model composed of a single 1D chain. We detail the superspace description by showcasing how our model can be mapped to a Harper-Hofstadter model, familiar from the description of the integer quantum Hall effect, and analyze the vanishing field limit analytically. An extension of the method used for vanishing fields is provided in order to handle any finite fields, corresponding to hopping modulations both commensurate and incommensurate with the lattice. In addition, this formalism allows us to obtain certain features of the 2D superspace model, such as its number of massless Dirac nodes, purely in terms of topological quantities, computed without the need to go into momentum space.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAntão, T V C, Miranda, D A & Peres, N M R 2024, ' Coexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André model ', Physical Review B, vol. 109, no. 19, 195436, pp. 1-15 . https://doi.org/10.1103/PhysRevB.109.195436en
dc.identifier.doi10.1103/PhysRevB.109.195436en_US
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherPURE UUID: cd0c37f9-b67f-4b40-8bce-73c12e6b08e1en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cd0c37f9-b67f-4b40-8bce-73c12e6b08e1en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85195052960&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/148528554/Coexistence_of_one-dimensional_and_two-dimensional_topology_and_genesis_of_Dirac_cones_in_the_chiral_Aubry-Andr_model.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/129042
dc.identifier.urnURN:NBN:fi:aalto-202406204628
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review B
dc.relation.ispartofseriesVolume 109, issue 19, pp. 1-15
dc.rightsopenAccessen
dc.titleCoexistence of one-dimensional and two-dimensional topology and genesis of Dirac cones in the chiral Aubry-André modelen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files