Localized Lasso for High-Dimensional Regression
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Yamada, Makoto | en_US |
dc.contributor.author | Koh, Takeuchi | en_US |
dc.contributor.author | Iwata, Tomoharu | en_US |
dc.contributor.author | Shawe-Taylor, John | en_US |
dc.contributor.author | Kaski, Samuel | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Singh, Aarti | en_US |
dc.contributor.editor | Zhu, Jerry | en_US |
dc.contributor.groupauthor | Centre of Excellence in Computational Inference, COIN | en |
dc.contributor.groupauthor | Professorship Kaski Samuel | en |
dc.contributor.groupauthor | Helsinki Institute for Information Technology (HIIT) | en |
dc.contributor.groupauthor | Probabilistic Machine Learning | en |
dc.contributor.organization | RIKEN Center for Advanced Intelligence Project | en_US |
dc.contributor.organization | NTT Communication Science Laboratories | en_US |
dc.contributor.organization | University College London | en_US |
dc.date.accessioned | 2019-07-30T07:19:20Z | |
dc.date.available | 2019-07-30T07:19:20Z | |
dc.date.issued | 2017-08-01 | en_US |
dc.description.abstract | We introduce the localized Lasso, which learns models that both are interpretable and have a high predictive power in problems with high dimensionality d and small sample size n. More specifically, we consider a function defined by local sparse models, one at each data point. We introduce sample-wise network regularization to borrow strength across the models, and sample-wise exclusive group sparsity (a.k.a., l12 norm) to introduce diversity into the choice of feature sets in the local models. The local models are interpretable in terms of similarity of their sparsity patterns. The cost function is convex, and thus has a globally optimal solution. Moreover, we propose a simple yet efficient iterative least-squares based optimization procedure for the localized Lasso, which does not need a tuning parameter, and is guaranteed to converge to a globally optimal solution. The solution is empirically shown to outperform alternatives for both simulated and genomic personalized/precision medicine data. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 9 | |
dc.format.extent | 325-333 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Yamada, M, Koh, T, Iwata, T, Shawe-Taylor, J & Kaski, S 2017, Localized Lasso for High-Dimensional Regression . in A Singh & J Zhu (eds), Proceedings of the 20th International Conference on Artificial Intelligence and Statistics . Proceedings of Machine Learning Research, vol. 54, JMLR, Fort Lauderdale, FL, USA, pp. 325-333, International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, United States, 20/04/2017 . < http://proceedings.mlr.press/v54/yamada17a.html > | en |
dc.identifier.issn | 1938-7228 | |
dc.identifier.other | PURE UUID: aadd9131-ac96-4d1d-9384-9ea9b6a1fe97 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/aadd9131-ac96-4d1d-9384-9ea9b6a1fe97 | en_US |
dc.identifier.other | PURE LINK: http://proceedings.mlr.press/v54/yamada17a.html | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/35131960/yamada17a.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/39485 | |
dc.identifier.urn | URN:NBN:fi:aalto-201907304540 | |
dc.language.iso | en | en |
dc.publisher | PMLR | |
dc.relation.ispartof | International Conference on Artificial Intelligence and Statistics | en |
dc.relation.ispartofseries | Proceedings of the 20th International Conference on Artificial Intelligence and Statistics | en |
dc.relation.ispartofseries | Proceedings of Machine Learning Research | en |
dc.relation.ispartofseries | Volume 54 | en |
dc.rights | openAccess | en |
dc.title | Localized Lasso for High-Dimensional Regression | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |